You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Gerber, Mike 5d05953b5f | 3 years ago | |
---|---|---|
2019-12-tensorflow2-keras-cnn+lstm | 5 years ago | |
2020-03-tensorflow-vs-tensorflow-gpu | 5 years ago | |
assets | 3 years ago | |
README.md | 3 years ago | |
run | 4 years ago | |
run-docker | 4 years ago | |
run-docker-compatibility-matrix | 3 years ago | |
test-nvidia | 3 years ago |
README.md
Test Nvidia CUDA environment in relation to TensorFlow
./run
tests the native system. One of tf1 or tf2 is expected to have no GPU available due to CUDA library incompatibility./run-docker
tests Docker support. Both TensorFlow versions should work as we're using a base image compatible to the respective version../run-docker-compatibility-matrix
tests combinations of (pip-installable) TensorFlow versions andnvidia/cuda
images.
Example output
% ./run-docker
== tf1
GPU 0: GeForce RTX 2080 (UUID: GPU-612ce75c-1340-772b-039c-2a83a3ea5c95)
TensorFlow 1.15.3
GPU available: True
== tf2
GPU 0: GeForce RTX 2080 (UUID: GPU-612ce75c-1340-772b-039c-2a83a3ea5c95)
TensorFlow 2.3.0
GPU available: True
Results
As of 2021-10, the only combinations that are working:
- TensorFlow 1.15.3 using CUDA Toolkit 10.0
- (TensorFlow 2.3.0 using CUDA Toolkit 10.1)
- TensorFlow 2.4.3 using CUDA Toolkit 11.0
- TensorFlow 2.5.1 & TensorFlow 2.6.0 using CUDA Toolkit 11.1 & 11.2.1
This is only for pip-installable TensorFlow from PyPI, not self-compiled nor
Anaconda. Note that these are the CUDA Toolkit versions, not the CUDA version
the driver supports (reported by nvidia-smi
).
Full log run-docker-compatibility-matrix
tensorflow-gpu 1.15 nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 True
tensorflow-gpu 1.15 nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 False
tensorflow-gpu 1.15 nvidia/cuda:10.2-cudnn7-runtime-ubuntu18.04 False
tensorflow-gpu 1.15 nvidia/cuda:11.0-cudnn8-runtime-ubuntu18.04 False
tensorflow-gpu 1.15 nvidia/cuda:11.1-cudnn8-runtime-ubuntu18.04 False
tensorflow-gpu 1.15 nvidia/cuda:11.2.1-cudnn8-runtime-ubuntu18.04 False
tensorflow 2.4.3 nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.4.3 nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.4.3 nvidia/cuda:10.2-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.4.3 nvidia/cuda:11.0-cudnn8-runtime-ubuntu18.04 True
tensorflow 2.4.3 nvidia/cuda:11.1-cudnn8-runtime-ubuntu18.04 False
tensorflow 2.4.3 nvidia/cuda:11.2.1-cudnn8-runtime-ubuntu18.04 False
tensorflow 2.5.1 nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.5.1 nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.5.1 nvidia/cuda:10.2-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.5.1 nvidia/cuda:11.0-cudnn8-runtime-ubuntu18.04 False
tensorflow 2.5.1 nvidia/cuda:11.1-cudnn8-runtime-ubuntu18.04 True
tensorflow 2.5.1 nvidia/cuda:11.2.1-cudnn8-runtime-ubuntu18.04 True
tensorflow 2.6.0 nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.6.0 nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.6.0 nvidia/cuda:10.2-cudnn7-runtime-ubuntu18.04 False
tensorflow 2.6.0 nvidia/cuda:11.0-cudnn8-runtime-ubuntu18.04 False
tensorflow 2.6.0 nvidia/cuda:11.1-cudnn8-runtime-ubuntu18.04 True
tensorflow 2.6.0 nvidia/cuda:11.2.1-cudnn8-runtime-ubuntu18.04 True