You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
35 lines
1.1 KiB
Matlab
35 lines
1.1 KiB
Matlab
10 years ago
|
function [C, sigma] = dataset3Params(X, y, Xval, yval)
|
||
|
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
|
||
|
%where you select the optimal (C, sigma) learning parameters to use for SVM
|
||
|
%with RBF kernel
|
||
|
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
|
||
|
% sigma. You should complete this function to return the optimal C and
|
||
|
% sigma based on a cross-validation set.
|
||
|
%
|
||
|
|
||
|
% You need to return the following variables correctly.
|
||
|
C = 1;
|
||
|
sigma = 0.3;
|
||
|
|
||
|
% ====================== YOUR CODE HERE ======================
|
||
|
% Instructions: Fill in this function to return the optimal C and sigma
|
||
|
% learning parameters found using the cross validation set.
|
||
|
% You can use svmPredict to predict the labels on the cross
|
||
|
% validation set. For example,
|
||
|
% predictions = svmPredict(model, Xval);
|
||
|
% will return the predictions on the cross validation set.
|
||
|
%
|
||
|
% Note: You can compute the prediction error using
|
||
|
% mean(double(predictions ~= yval))
|
||
|
%
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
% =========================================================================
|
||
|
|
||
|
end
|