Learning curve function
This commit is contained in:
		
							parent
							
								
									90f2928cee
								
							
						
					
					
						commit
						1cc58802eb
					
				
					 1 changed files with 31 additions and 15 deletions
				
			
		| 
						 | 
					@ -42,18 +42,34 @@ error_val   = zeros(m, 1);
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% Hint: You can loop over the examples with the following:
 | 
					% Hint: You can loop over the examples with the following:
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
%       for i = 1:m
 | 
					for i = 1:m
 | 
				
			||||||
%           % Compute train/cross validation errors using training examples 
 | 
					  % Compute train/cross validation errors using training examples
 | 
				
			||||||
%           % X(1:i, :) and y(1:i), storing the result in 
 | 
					  % X(1:i, :) and y(1:i), storing the result in
 | 
				
			||||||
%           % error_train(i) and error_val(i)
 | 
					  % error_train(i) and error_val(i)
 | 
				
			||||||
%           ....
 | 
					
 | 
				
			||||||
%           
 | 
					  X_ = X(1:i,:);
 | 
				
			||||||
%       end
 | 
					  y_ = y(1:i);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  % Train with regularization
 | 
				
			||||||
 | 
					  lambda = 1;
 | 
				
			||||||
 | 
					  theta = trainLinearReg(X_, y_, lambda);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  % Compute the error with lambda = 0
 | 
				
			||||||
 | 
					  lambda = 0;
 | 
				
			||||||
 | 
					  error_train(i) = linearRegCostFunction(X_, y_, theta, lambda);
 | 
				
			||||||
 | 
					  error_val(i) = linearRegCostFunction(Xval, yval, theta, lambda);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% ---------------------- Sample Solution ----------------------
 | 
					% ---------------------- Sample Solution ----------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%       for i = 1:m
 | 
				
			||||||
 | 
					%           % Compute train/cross validation errors using training examples
 | 
				
			||||||
 | 
					%           % X(1:i, :) and y(1:i), storing the result in
 | 
				
			||||||
 | 
					%           % error_train(i) and error_val(i)
 | 
				
			||||||
 | 
					%           ....
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Reference in a new issue