Learning curve function
This commit is contained in:
parent
90f2928cee
commit
1cc58802eb
1 changed files with 31 additions and 15 deletions
|
@ -42,18 +42,34 @@ error_val = zeros(m, 1);
|
|||
%
|
||||
% Hint: You can loop over the examples with the following:
|
||||
%
|
||||
% for i = 1:m
|
||||
% % Compute train/cross validation errors using training examples
|
||||
% % X(1:i, :) and y(1:i), storing the result in
|
||||
% % error_train(i) and error_val(i)
|
||||
% ....
|
||||
%
|
||||
% end
|
||||
for i = 1:m
|
||||
% Compute train/cross validation errors using training examples
|
||||
% X(1:i, :) and y(1:i), storing the result in
|
||||
% error_train(i) and error_val(i)
|
||||
|
||||
X_ = X(1:i,:);
|
||||
y_ = y(1:i);
|
||||
|
||||
% Train with regularization
|
||||
lambda = 1;
|
||||
theta = trainLinearReg(X_, y_, lambda);
|
||||
|
||||
% Compute the error with lambda = 0
|
||||
lambda = 0;
|
||||
error_train(i) = linearRegCostFunction(X_, y_, theta, lambda);
|
||||
error_val(i) = linearRegCostFunction(Xval, yval, theta, lambda);
|
||||
|
||||
end
|
||||
%
|
||||
|
||||
% ---------------------- Sample Solution ----------------------
|
||||
|
||||
|
||||
% for i = 1:m
|
||||
% % Compute train/cross validation errors using training examples
|
||||
% % X(1:i, :) and y(1:i), storing the result in
|
||||
% % error_train(i) and error_val(i)
|
||||
% ....
|
||||
|
||||
|
||||
|
||||
|
|
Reference in a new issue