|
|
@ -2,8 +2,8 @@ function [C, sigma] = dataset3Params(X, y, Xval, yval)
|
|
|
|
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
|
|
|
|
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
|
|
|
|
%where you select the optimal (C, sigma) learning parameters to use for SVM
|
|
|
|
%where you select the optimal (C, sigma) learning parameters to use for SVM
|
|
|
|
%with RBF kernel
|
|
|
|
%with RBF kernel
|
|
|
|
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
|
|
|
|
% [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and
|
|
|
|
% sigma. You should complete this function to return the optimal C and
|
|
|
|
% sigma. You should complete this function to return the optimal C and
|
|
|
|
% sigma based on a cross-validation set.
|
|
|
|
% sigma based on a cross-validation set.
|
|
|
|
%
|
|
|
|
%
|
|
|
|
|
|
|
|
|
|
|
@ -15,19 +15,46 @@ sigma = 0.3;
|
|
|
|
% Instructions: Fill in this function to return the optimal C and sigma
|
|
|
|
% Instructions: Fill in this function to return the optimal C and sigma
|
|
|
|
% learning parameters found using the cross validation set.
|
|
|
|
% learning parameters found using the cross validation set.
|
|
|
|
% You can use svmPredict to predict the labels on the cross
|
|
|
|
% You can use svmPredict to predict the labels on the cross
|
|
|
|
% validation set. For example,
|
|
|
|
% validation set. For example,
|
|
|
|
% predictions = svmPredict(model, Xval);
|
|
|
|
% predictions = svmPredict(model, Xval);
|
|
|
|
% will return the predictions on the cross validation set.
|
|
|
|
% will return the predictions on the cross validation set.
|
|
|
|
%
|
|
|
|
%
|
|
|
|
% Note: You can compute the prediction error using
|
|
|
|
% Note: You can compute the prediction error using
|
|
|
|
% mean(double(predictions ~= yval))
|
|
|
|
% mean(double(predictions ~= yval))
|
|
|
|
%
|
|
|
|
%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grid_search = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if grid_search
|
|
|
|
|
|
|
|
% Grid search
|
|
|
|
|
|
|
|
load ex6data3.mat
|
|
|
|
|
|
|
|
%grid = [0.01, 0.03];
|
|
|
|
|
|
|
|
grid = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30];
|
|
|
|
|
|
|
|
results = [];
|
|
|
|
|
|
|
|
for C = grid
|
|
|
|
|
|
|
|
for sigma = grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fprintf('== C = %.2f, sigma = %.2f\n', C, sigma);
|
|
|
|
|
|
|
|
model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
|
|
|
|
|
|
|
|
predictions = svmPredict(model, Xval);
|
|
|
|
|
|
|
|
error = mean(double(predictions ~= yval));
|
|
|
|
|
|
|
|
fprintf('error = %.2f\n\n', error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
results(end + 1,:) = [C, sigma, error];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[_, best_i] = min(results(:,3));
|
|
|
|
|
|
|
|
C = results(best_i, 1);
|
|
|
|
|
|
|
|
sigma = results(best_i, 2);
|
|
|
|
|
|
|
|
error = results(best_i, 3);
|
|
|
|
|
|
|
|
fprintf('Best: C = %.2f, sigma = %.2f with error = %.2f\n', C, sigma, error);
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
% Found through the grid search above
|
|
|
|
|
|
|
|
C = 1.00;
|
|
|
|
|
|
|
|
sigma = 0.10;
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
% =========================================================================
|
|
|
|
% =========================================================================
|
|
|
|
|
|
|
|
|
|
|
|