Implement PCA
parent
5f3f65c69c
commit
2b98bd80f0
@ -1,31 +1,29 @@
|
|||||||
function [U, S] = pca(X)
|
function [U, S] = pca(X)
|
||||||
%PCA Run principal component analysis on the dataset X
|
%PCA Run principal component analysis on the dataset X
|
||||||
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
|
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
|
||||||
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
|
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
|
||||||
%
|
%
|
||||||
|
|
||||||
% Useful values
|
% Useful values
|
||||||
[m, n] = size(X);
|
[m, n] = size(X);
|
||||||
|
|
||||||
% You need to return the following variables correctly.
|
% You need to return the following variables correctly.
|
||||||
U = zeros(n);
|
U = zeros(n);
|
||||||
S = zeros(n);
|
S = zeros(n);
|
||||||
|
|
||||||
% ====================== YOUR CODE HERE ======================
|
% ====================== YOUR CODE HERE ======================
|
||||||
% Instructions: You should first compute the covariance matrix. Then, you
|
% Instructions: You should first compute the covariance matrix. Then, you
|
||||||
% should use the "svd" function to compute the eigenvectors
|
% should use the "svd" function to compute the eigenvectors
|
||||||
% and eigenvalues of the covariance matrix.
|
% and eigenvalues of the covariance matrix.
|
||||||
%
|
%
|
||||||
% Note: When computing the covariance matrix, remember to divide by m (the
|
% Note: When computing the covariance matrix, remember to divide by m (the
|
||||||
% number of examples).
|
% number of examples).
|
||||||
%
|
%
|
||||||
|
|
||||||
|
Sigma = 1/m * X'*X; % covariance matrix
|
||||||
|
|
||||||
|
[U, S, V] = svd(Sigma);
|
||||||
|
|
||||||
|
% =========================================================================
|
||||||
|
|
||||||
% =========================================================================
|
end
|
||||||
|
|
||||||
end
|
|
||||||
|
Reference in New Issue