Implement PCA
parent
5f3f65c69c
commit
2b98bd80f0
@ -1,31 +1,29 @@
|
||||
function [U, S] = pca(X)
|
||||
%PCA Run principal component analysis on the dataset X
|
||||
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
|
||||
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
|
||||
%
|
||||
|
||||
% Useful values
|
||||
[m, n] = size(X);
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
U = zeros(n);
|
||||
S = zeros(n);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should first compute the covariance matrix. Then, you
|
||||
% should use the "svd" function to compute the eigenvectors
|
||||
% and eigenvalues of the covariance matrix.
|
||||
%
|
||||
% Note: When computing the covariance matrix, remember to divide by m (the
|
||||
% number of examples).
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
function [U, S] = pca(X)
|
||||
%PCA Run principal component analysis on the dataset X
|
||||
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
|
||||
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
|
||||
%
|
||||
|
||||
% Useful values
|
||||
[m, n] = size(X);
|
||||
|
||||
% You need to return the following variables correctly.
|
||||
U = zeros(n);
|
||||
S = zeros(n);
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: You should first compute the covariance matrix. Then, you
|
||||
% should use the "svd" function to compute the eigenvectors
|
||||
% and eigenvalues of the covariance matrix.
|
||||
%
|
||||
% Note: When computing the covariance matrix, remember to divide by m (the
|
||||
% number of examples).
|
||||
%
|
||||
|
||||
Sigma = 1/m * X'*X; % covariance matrix
|
||||
|
||||
[U, S, V] = svd(Sigma);
|
||||
|
||||
% =========================================================================
|
||||
|
||||
end
|
||||
|
Reference in New Issue