1
0
Fork 0

Gradient descent for one variable

master
neingeist 10 years ago
parent 514431e135
commit 2bf076c2fc

@ -1,6 +1,6 @@
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
@ -11,21 +11,16 @@ for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
theta = theta - (alpha/m) * X' * (X*theta - y);
% ============================================================
% Save the cost J in every iteration
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end