|
|
@ -1,6 +1,6 @@
|
|
|
|
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
|
|
|
|
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
|
|
|
|
%GRADIENTDESCENT Performs gradient descent to learn theta
|
|
|
|
%GRADIENTDESCENT Performs gradient descent to learn theta
|
|
|
|
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
|
|
|
|
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
|
|
|
|
% taking num_iters gradient steps with learning rate alpha
|
|
|
|
% taking num_iters gradient steps with learning rate alpha
|
|
|
|
|
|
|
|
|
|
|
|
% Initialize some useful values
|
|
|
|
% Initialize some useful values
|
|
|
@ -11,21 +11,16 @@ for iter = 1:num_iters
|
|
|
|
|
|
|
|
|
|
|
|
% ====================== YOUR CODE HERE ======================
|
|
|
|
% ====================== YOUR CODE HERE ======================
|
|
|
|
% Instructions: Perform a single gradient step on the parameter vector
|
|
|
|
% Instructions: Perform a single gradient step on the parameter vector
|
|
|
|
% theta.
|
|
|
|
% theta.
|
|
|
|
%
|
|
|
|
%
|
|
|
|
% Hint: While debugging, it can be useful to print out the values
|
|
|
|
% Hint: While debugging, it can be useful to print out the values
|
|
|
|
% of the cost function (computeCost) and gradient here.
|
|
|
|
% of the cost function (computeCost) and gradient here.
|
|
|
|
%
|
|
|
|
%
|
|
|
|
|
|
|
|
theta = theta - (alpha/m) * X' * (X*theta - y);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% ============================================================
|
|
|
|
% ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
% Save the cost J in every iteration
|
|
|
|
% Save the cost J in every iteration
|
|
|
|
J_history(iter) = computeCost(X, y, theta);
|
|
|
|
J_history(iter) = computeCost(X, y, theta);
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
end
|
|
|
|