|
|
|
@ -1,34 +1,26 @@
|
|
|
|
|
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
|
|
|
|
|
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
|
|
|
|
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
|
|
|
|
%regression with multiple variables
|
|
|
|
|
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
|
|
|
|
% cost of using theta as the parameter for linear regression to fit the
|
|
|
|
|
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
|
|
|
|
% cost of using theta as the parameter for linear regression to fit the
|
|
|
|
|
% data points in X and y. Returns the cost in J and the gradient in grad
|
|
|
|
|
|
|
|
|
|
% Initialize some useful values
|
|
|
|
|
m = length(y); % number of training examples
|
|
|
|
|
|
|
|
|
|
% You need to return the following variables correctly
|
|
|
|
|
% You need to return the following variables correctly
|
|
|
|
|
J = 0;
|
|
|
|
|
grad = zeros(size(theta));
|
|
|
|
|
|
|
|
|
|
% ====================== YOUR CODE HERE ======================
|
|
|
|
|
% Instructions: Compute the cost and gradient of regularized linear
|
|
|
|
|
% Instructions: Compute the cost and gradient of regularized linear
|
|
|
|
|
% regression for a particular choice of theta.
|
|
|
|
|
%
|
|
|
|
|
% You should set J to the cost and grad to the gradient.
|
|
|
|
|
%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J = 1/(2*m) * sum(((X*theta)-y).^2) ...
|
|
|
|
|
+ lambda/(2*m) * sum(theta(2:end).^2);
|
|
|
|
|
|
|
|
|
|
% =========================================================================
|
|
|
|
|
|
|
|
|
|