Regularized linear regression cost function
This commit is contained in:
parent
d93d111106
commit
6530916642
1 changed files with 7 additions and 15 deletions
|
@ -1,34 +1,26 @@
|
|||
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
|
||||
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
||||
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
|
||||
%regression with multiple variables
|
||||
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
||||
% cost of using theta as the parameter for linear regression to fit the
|
||||
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
|
||||
% cost of using theta as the parameter for linear regression to fit the
|
||||
% data points in X and y. Returns the cost in J and the gradient in grad
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the cost and gradient of regularized linear
|
||||
% Instructions: Compute the cost and gradient of regularized linear
|
||||
% regression for a particular choice of theta.
|
||||
%
|
||||
% You should set J to the cost and grad to the gradient.
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
J = 1/(2*m) * sum(((X*theta)-y).^2) ...
|
||||
+ lambda/(2*m) * sum(theta(2:end).^2);
|
||||
|
||||
% =========================================================================
|
||||
|
||||
|
|
Reference in a new issue