1
0
Fork 0

Regularized linear regression cost function

master
neingeist 10 years ago
parent d93d111106
commit 6530916642

@ -1,34 +1,26 @@
function [J, grad] = linearRegCostFunction(X, y, theta, lambda) function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables %regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the % cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad % data points in X and y. Returns the cost in J and the gradient in grad
% Initialize some useful values % Initialize some useful values
m = length(y); % number of training examples m = length(y); % number of training examples
% You need to return the following variables correctly % You need to return the following variables correctly
J = 0; J = 0;
grad = zeros(size(theta)); grad = zeros(size(theta));
% ====================== YOUR CODE HERE ====================== % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear % Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta. % regression for a particular choice of theta.
% %
% You should set J to the cost and grad to the gradient. % You should set J to the cost and grad to the gradient.
% %
J = 1/(2*m) * sum(((X*theta)-y).^2) ...
+ lambda/(2*m) * sum(theta(2:end).^2);
% ========================================================================= % =========================================================================