Validation curve function
This commit is contained in:
parent
3751214442
commit
78830aaea7
1 changed files with 15 additions and 15 deletions
|
@ -17,36 +17,36 @@ error_train = zeros(length(lambda_vec), 1);
|
||||||
error_val = zeros(length(lambda_vec), 1);
|
error_val = zeros(length(lambda_vec), 1);
|
||||||
|
|
||||||
% ====================== YOUR CODE HERE ======================
|
% ====================== YOUR CODE HERE ======================
|
||||||
% Instructions: Fill in this function to return training errors in
|
% Instructions: Fill in this function to return training errors in
|
||||||
% error_train and the validation errors in error_val. The
|
% error_train and the validation errors in error_val. The
|
||||||
% vector lambda_vec contains the different lambda parameters
|
% vector lambda_vec contains the different lambda parameters
|
||||||
% to use for each calculation of the errors, i.e,
|
% to use for each calculation of the errors, i.e,
|
||||||
% error_train(i), and error_val(i) should give
|
% error_train(i), and error_val(i) should give
|
||||||
% you the errors obtained after training with
|
% you the errors obtained after training with
|
||||||
% lambda = lambda_vec(i)
|
% lambda = lambda_vec(i)
|
||||||
%
|
%
|
||||||
% Note: You can loop over lambda_vec with the following:
|
% Note: You can loop over lambda_vec with the following:
|
||||||
%
|
%
|
||||||
% for i = 1:length(lambda_vec)
|
% for i = 1:length(lambda_vec)
|
||||||
% lambda = lambda_vec(i);
|
% lambda = lambda_vec(i);
|
||||||
% % Compute train / val errors when training linear
|
% % Compute train / val errors when training linear
|
||||||
% % regression with regularization parameter lambda
|
% % regression with regularization parameter lambda
|
||||||
% % You should store the result in error_train(i)
|
% % You should store the result in error_train(i)
|
||||||
% % and error_val(i)
|
% % and error_val(i)
|
||||||
% ....
|
% ....
|
||||||
%
|
%
|
||||||
% end
|
% end
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
|
|
||||||
|
for i = 1:length(lambda_vec)
|
||||||
|
lambda = lambda_vec(i);
|
||||||
|
theta = trainLinearReg(X, y, lambda);
|
||||||
|
|
||||||
|
lambda = 0;
|
||||||
|
error_train(i) = linearRegCostFunction(X, y, theta, lambda);
|
||||||
|
error_val(i) = linearRegCostFunction(Xval, yval, theta, lambda);
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% =========================================================================
|
% =========================================================================
|
||||||
|
|
||||||
|
|
Reference in a new issue