Select threshold
parent
4bc9a2b246
commit
87457bb7b4
@ -1,46 +1,44 @@
|
||||
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
|
||||
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
|
||||
%outliers
|
||||
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
|
||||
% threshold to use for selecting outliers based on the results from a
|
||||
% validation set (pval) and the ground truth (yval).
|
||||
%
|
||||
|
||||
bestEpsilon = 0;
|
||||
bestF1 = 0;
|
||||
F1 = 0;
|
||||
|
||||
stepsize = (max(pval) - min(pval)) / 1000;
|
||||
for epsilon = min(pval):stepsize:max(pval)
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the F1 score of choosing epsilon as the
|
||||
% threshold and place the value in F1. The code at the
|
||||
% end of the loop will compare the F1 score for this
|
||||
% choice of epsilon and set it to be the best epsilon if
|
||||
% it is better than the current choice of epsilon.
|
||||
%
|
||||
% Note: You can use predictions = (pval < epsilon) to get a binary vector
|
||||
% of 0's and 1's of the outlier predictions
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% =============================================================
|
||||
|
||||
if F1 > bestF1
|
||||
bestF1 = F1;
|
||||
bestEpsilon = epsilon;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
|
||||
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
|
||||
%outliers
|
||||
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
|
||||
% threshold to use for selecting outliers based on the results from a
|
||||
% validation set (pval) and the ground truth (yval).
|
||||
%
|
||||
|
||||
bestEpsilon = 0;
|
||||
bestF1 = 0;
|
||||
F1 = 0;
|
||||
|
||||
stepsize = (max(pval) - min(pval)) / 1000;
|
||||
for epsilon = min(pval):stepsize:max(pval)
|
||||
|
||||
% ====================== YOUR CODE HERE ======================
|
||||
% Instructions: Compute the F1 score of choosing epsilon as the
|
||||
% threshold and place the value in F1. The code at the
|
||||
% end of the loop will compare the F1 score for this
|
||||
% choice of epsilon and set it to be the best epsilon if
|
||||
% it is better than the current choice of epsilon.
|
||||
%
|
||||
% Note: You can use predictions = (pval < epsilon) to get a binary vector
|
||||
% of 0's and 1's of the outlier predictions
|
||||
|
||||
predictions = (pval < epsilon);
|
||||
|
||||
tp = sum((predictions == 1) & (yval == 1));
|
||||
fp = sum((predictions == 1) & (yval == 0));
|
||||
fn = sum((predictions == 0) & (yval == 1));
|
||||
prec = tp/(tp+fp);
|
||||
rec = tp/(tp+fn);
|
||||
|
||||
F1 = (2*prec*rec)/(prec+rec);
|
||||
|
||||
% =============================================================
|
||||
|
||||
if F1 > bestF1
|
||||
bestF1 = F1;
|
||||
bestEpsilon = epsilon;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
Reference in New Issue