Vectorized regularized logistic regression, again
This commit is contained in:
parent
326a924044
commit
9117809537
1 changed files with 13 additions and 15 deletions
|
@ -1,14 +1,14 @@
|
|||
function [J, grad] = lrCostFunction(theta, X, y, lambda)
|
||||
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
|
||||
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
|
||||
%regularization
|
||||
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
|
||||
% theta as the parameter for regularized logistic regression and the
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
% gradient of the cost w.r.t. to the parameters.
|
||||
|
||||
% Initialize some useful values
|
||||
m = length(y); % number of training examples
|
||||
|
||||
% You need to return the following variables correctly
|
||||
% You need to return the following variables correctly
|
||||
J = 0;
|
||||
grad = zeros(size(theta));
|
||||
|
||||
|
@ -25,25 +25,23 @@ grad = zeros(size(theta));
|
|||
%
|
||||
% Each row of the resulting matrix will contain the value of the
|
||||
% prediction for that example. You can make use of this to vectorize
|
||||
% the cost function and gradient computations.
|
||||
% the cost function and gradient computations.
|
||||
%
|
||||
% Hint: When computing the gradient of the regularized cost function,
|
||||
|
||||
J = 1/m * (-y'*log(sigmoid(X*theta)) - (1-y)'*log(1-sigmoid(X*theta))) ...
|
||||
+ lambda/(2*m) * theta(2:end)' * theta(2:end);
|
||||
|
||||
% Hint: When computing the gradient of the regularized cost function,
|
||||
% there're many possible vectorized solutions, but one solution
|
||||
% looks like:
|
||||
% grad = (unregularized gradient for logistic regression)
|
||||
% temp = theta;
|
||||
% temp(1) = 0; % because we don't add anything for j = 0
|
||||
% temp = theta;
|
||||
% temp(1) = 0; % because we don't add anything for j = 0
|
||||
% grad = grad + YOUR_CODE_HERE (using the temp variable)
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
regularization_term = lambda/m * vertcat([0], theta(2:end));
|
||||
grad = 1/m * X' * (sigmoid(X*theta) - y) + regularization_term;
|
||||
|
||||
% =============================================================
|
||||
|
||||
|
|
Reference in a new issue