|
|
|
@ -1,17 +1,17 @@
|
|
|
|
|
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
|
|
|
|
|
%ONEVSALL trains multiple logistic regression classifiers and returns all
|
|
|
|
|
%the classifiers in a matrix all_theta, where the i-th row of all_theta
|
|
|
|
|
%the classifiers in a matrix all_theta, where the i-th row of all_theta
|
|
|
|
|
%corresponds to the classifier for label i
|
|
|
|
|
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
|
|
|
|
|
% logisitc regression classifiers and returns each of these classifiers
|
|
|
|
|
% in a matrix all_theta, where the i-th row of all_theta corresponds
|
|
|
|
|
% in a matrix all_theta, where the i-th row of all_theta corresponds
|
|
|
|
|
% to the classifier for label i
|
|
|
|
|
|
|
|
|
|
% Some useful variables
|
|
|
|
|
m = size(X, 1);
|
|
|
|
|
n = size(X, 2);
|
|
|
|
|
|
|
|
|
|
% You need to return the following variables correctly
|
|
|
|
|
% You need to return the following variables correctly
|
|
|
|
|
all_theta = zeros(num_labels, n + 1);
|
|
|
|
|
|
|
|
|
|
% Add ones to the X data matrix
|
|
|
|
@ -20,11 +20,11 @@ X = [ones(m, 1) X];
|
|
|
|
|
% ====================== YOUR CODE HERE ======================
|
|
|
|
|
% Instructions: You should complete the following code to train num_labels
|
|
|
|
|
% logistic regression classifiers with regularization
|
|
|
|
|
% parameter lambda.
|
|
|
|
|
% parameter lambda.
|
|
|
|
|
%
|
|
|
|
|
% Hint: theta(:) will return a column vector.
|
|
|
|
|
%
|
|
|
|
|
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
|
|
|
|
|
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
|
|
|
|
|
% whether the ground truth is true/false for this class.
|
|
|
|
|
%
|
|
|
|
|
% Note: For this assignment, we recommend using fmincg to optimize the cost
|
|
|
|
@ -38,29 +38,31 @@ X = [ones(m, 1) X];
|
|
|
|
|
%
|
|
|
|
|
% % Set Initial theta
|
|
|
|
|
% initial_theta = zeros(n + 1, 1);
|
|
|
|
|
%
|
|
|
|
|
%
|
|
|
|
|
% % Set options for fminunc
|
|
|
|
|
% options = optimset('GradObj', 'on', 'MaxIter', 50);
|
|
|
|
|
%
|
|
|
|
|
%
|
|
|
|
|
% % Run fmincg to obtain the optimal theta
|
|
|
|
|
% % This function will return theta and the cost
|
|
|
|
|
% % This function will return theta and the cost
|
|
|
|
|
% [theta] = ...
|
|
|
|
|
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
|
|
|
|
|
% initial_theta, options);
|
|
|
|
|
%
|
|
|
|
|
|
|
|
|
|
for c = 1:num_labels
|
|
|
|
|
|
|
|
|
|
% Train a one-vs all classifier for this class c
|
|
|
|
|
|
|
|
|
|
initial_theta = zeros(n + 1, 1);
|
|
|
|
|
options = optimset('GradObj', 'on', 'MaxIter', 50);
|
|
|
|
|
|
|
|
|
|
[theta] = fmincg(@(t)(lrCostFunction(t, X, (y == c), lambda)),
|
|
|
|
|
initial_theta, options);
|
|
|
|
|
|
|
|
|
|
all_theta(c,:) = theta';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
% =========================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|