1
0
Fork 0

Add cost function for regularized logistic regression

master
neingeist 10 years ago
parent 224a17e4d3
commit f391ac661e

@ -2,12 +2,12 @@ function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
@ -17,10 +17,8 @@ grad = zeros(size(theta));
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
J = 1/m * (-y'*log(sigmoid(X*theta)) - (1-y)'*log(1-sigmoid(X*theta))) ...
+ lambda/(2*m) * theta(2:end)' * theta(2:end);
% =============================================================