%% Machine Learning Online Class % Exercise 5 | Regularized Linear Regression and Bias-Variance % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % linearRegCostFunction.m % learningCurve.m % validationCurve.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% =========== Part 1: Loading and Visualizing Data ============= % We start the exercise by first loading and visualizing the dataset. % The following code will load the dataset into your environment and plot % the data. % % Load Training Data fprintf('Loading and Visualizing Data ...\n') % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in your environment load ('ex5data1.mat'); % m = Number of examples m = size(X, 1); % Plot training data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 2: Regularized Linear Regression Cost ============= % You should now implement the cost function for regularized linear % regression. % theta = [1 ; 1]; J = linearRegCostFunction([ones(m, 1) X], y, theta, 1); fprintf(['Cost at theta = [1 ; 1]: %f '... '\n(this value should be about 303.993192)\n'], J); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 3: Regularized Linear Regression Gradient ============= % You should now implement the gradient for regularized linear % regression. % theta = [1 ; 1]; [J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1); fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '... '\n(this value should be about [-15.303016; 598.250744])\n'], ... grad(1), grad(2)); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 4: Train Linear Regression ============= % Once you have implemented the cost and gradient correctly, the % trainLinearReg function will use your cost function to train % regularized linear regression. % % Write Up Note: The data is non-linear, so this will not give a great % fit. % % Train linear regression with lambda = 0 lambda = 0; [theta] = trainLinearReg([ones(m, 1) X], y, lambda); % Plot fit over the data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); hold on; plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2) hold off; fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 5: Learning Curve for Linear Regression ============= % Next, you should implement the learningCurve function. % % Write Up Note: Since the model is underfitting the data, we expect to % see a graph with "high bias" -- slide 8 in ML-advice.pdf % lambda = 0; [error_train, error_val] = ... learningCurve([ones(m, 1) X], y, ... [ones(size(Xval, 1), 1) Xval], yval, ... lambda); plot(1:m, error_train, 1:m, error_val); title('Learning curve for linear regression') legend('Train', 'Cross Validation') xlabel('Number of training examples') ylabel('Error') axis([0 13 0 150]) fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 6: Feature Mapping for Polynomial Regression ============= % One solution to this is to use polynomial regression. You should now % complete polyFeatures to map each example into its powers % p = 8; % Map X onto Polynomial Features and Normalize X_poly = polyFeatures(X, p); [X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize X_poly = [ones(m, 1), X_poly]; % Add Ones % Map X_poly_test and normalize (using mu and sigma) X_poly_test = polyFeatures(Xtest, p); X_poly_test = bsxfun(@minus, X_poly_test, mu); X_poly_test = bsxfun(@rdivide, X_poly_test, sigma); X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones % Map X_poly_val and normalize (using mu and sigma) X_poly_val = polyFeatures(Xval, p); X_poly_val = bsxfun(@minus, X_poly_val, mu); X_poly_val = bsxfun(@rdivide, X_poly_val, sigma); X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones fprintf('Normalized Training Example 1:\n'); fprintf(' %f \n', X_poly(1, :)); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% =========== Part 7: Learning Curve for Polynomial Regression ============= % Now, you will get to experiment with polynomial regression with multiple % values of lambda. The code below runs polynomial regression with % lambda = 0. You should try running the code with different values of % lambda to see how the fit and learning curve change. % lambda = 1; [theta] = trainLinearReg(X_poly, y, lambda); % Plot training data and fit figure(1); plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); plotFit(min(X), max(X), mu, sigma, theta, p); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda)); figure(2); [error_train, error_val] = ... learningCurve(X_poly, y, X_poly_val, yval, lambda); plot(1:m, error_train, 1:m, error_val); title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda)); xlabel('Number of training examples') ylabel('Error') axis([0 13 0 100]) legend('Train', 'Cross Validation') fprintf('Polynomial Regression (lambda = %f)\n\n', lambda); fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 8: Validation for Selecting Lambda ============= % You will now implement validationCurve to test various values of % lambda on a validation set. You will then use this to select the % "best" lambda value. % [lambda_vec, error_train, error_val] = ... validationCurve(X_poly, y, X_poly_val, yval); close all; plot(lambda_vec, error_train, lambda_vec, error_val); legend('Train', 'Cross Validation'); xlabel('lambda'); ylabel('Error'); fprintf('lambda\t\tTrain Error\tValidation Error\n'); for i = 1:length(lambda_vec) fprintf(' %f\t%f\t%f\n', ... lambda_vec(i), error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; % Computing test set error [~, best_i] = min(error_val, [], 1); lambda_best = lambda_vec(best_i); theta_best = trainLinearReg(X_poly, y, lambda_best); error_test = linearRegCostFunction(X_poly_test, ytest, theta_best, 0); fprintf('Test set error for best lambda = %f: %f\n', ... lambda_best, error_test);