%% Machine Learning Online Class % Exercise 7 | Principle Component Analysis and K-Means Clustering % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % pca.m % projectData.m % recoverData.m % computeCentroids.m % findClosestCentroids.m % kMeansInitCentroids.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% ================= Part 1: Find Closest Centroids ==================== % To help you implement K-Means, we have divided the learning algorithm % into two functions -- findClosestCentroids and computeCentroids. In this % part, you shoudl complete the code in the findClosestCentroids function. % fprintf('Finding closest centroids.\n\n'); % Load an example dataset that we will be using load('ex7data2.mat'); % Select an initial set of centroids K = 3; % 3 Centroids initial_centroids = [3 3; 6 2; 8 5]; % Find the closest centroids for the examples using the % initial_centroids idx = findClosestCentroids(X, initial_centroids); fprintf('Closest centroids for the first 3 examples: \n') fprintf(' %d', idx(1:3)); fprintf('\n(the closest centroids should be 1, 3, 2 respectively)\n'); fprintf('Program paused. Press enter to continue.\n'); pause; %% ===================== Part 2: Compute Means ========================= % After implementing the closest centroids function, you should now % complete the computeCentroids function. % fprintf('\nComputing centroids means.\n\n'); % Compute means based on the closest centroids found in the previous part. centroids = computeCentroids(X, idx, K); fprintf('Centroids computed after initial finding of closest centroids: \n') fprintf(' %f %f \n' , centroids'); fprintf('\n(the centroids should be\n'); fprintf(' [ 2.428301 3.157924 ]\n'); fprintf(' [ 5.813503 2.633656 ]\n'); fprintf(' [ 7.119387 3.616684 ]\n\n'); fprintf('Program paused. Press enter to continue.\n'); pause; %% =================== Part 3: K-Means Clustering ====================== % After you have completed the two functions computeCentroids and % findClosestCentroids, you have all the necessary pieces to run the % kMeans algorithm. In this part, you will run the K-Means algorithm on % the example dataset we have provided. % fprintf('\nRunning K-Means clustering on example dataset.\n\n'); % Load an example dataset load('ex7data2.mat'); % Settings for running K-Means K = 3; max_iters = 10; % For consistency, here we set centroids to specific values % but in practice you want to generate them automatically, such as by % settings them to be random examples (as can be seen in % kMeansInitCentroids). initial_centroids = [3 3; 6 2; 8 5]; % Run K-Means algorithm. The 'true' at the end tells our function to plot % the progress of K-Means [centroids, idx] = runkMeans(X, initial_centroids, max_iters, true); fprintf('\nK-Means Done.\n\n'); fprintf('Program paused. Press enter to continue.\n'); pause; %% ============= Part 4: K-Means Clustering on Pixels =============== % In this exercise, you will use K-Means to compress an image. To do this, % you will first run K-Means on the colors of the pixels in the image and % then you will map each pixel on to it's closest centroid. % % You should now complete the code in kMeansInitCentroids.m % fprintf('\nRunning K-Means clustering on pixels from an image.\n\n'); % Load an image of a bird A = double(imread('bird_small.png')); % If imread does not work for you, you can try instead % load ('bird_small.mat'); A = A / 255; % Divide by 255 so that all values are in the range 0 - 1 % Size of the image img_size = size(A); % Reshape the image into an Nx3 matrix where N = number of pixels. % Each row will contain the Red, Green and Blue pixel values % This gives us our dataset matrix X that we will use K-Means on. X = reshape(A, img_size(1) * img_size(2), 3); % Run your K-Means algorithm on this data % You should try different values of K and max_iters here K = 16; max_iters = 10; % When using K-Means, it is important the initialize the centroids % randomly. % You should complete the code in kMeansInitCentroids.m before proceeding initial_centroids = kMeansInitCentroids(X, K); % Run K-Means [centroids, idx] = runkMeans(X, initial_centroids, max_iters); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================= Part 5: Image Compression ====================== % In this part of the exercise, you will use the clusters of K-Means to % compress an image. To do this, we first find the closest clusters for % each example. After that, we fprintf('\nApplying K-Means to compress an image.\n\n'); % Find closest cluster members idx = findClosestCentroids(X, centroids); % Essentially, now we have represented the image X as in terms of the % indices in idx. % We can now recover the image from the indices (idx) by mapping each pixel % (specified by it's index in idx) to the centroid value X_recovered = centroids(idx,:); % Reshape the recovered image into proper dimensions X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3); % Display the original image subplot(1, 2, 1); imagesc(A); title('Original'); % Display compressed image side by side subplot(1, 2, 2); imagesc(X_recovered) title(sprintf('Compressed, with %d colors.', K)); fprintf('Program paused. Press enter to continue.\n'); pause;