%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks % Instructions % ------------ % % This file contains code that helps you get started on the % linear exercise. You will need to complete the following functions % in this exericse: % % lrCostFunction.m (logistic regression cost function) % oneVsAll.m % predictOneVsAll.m % predict.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% Setup the parameters you will use for this exercise input_layer_size = 400; % 20x20 Input Images of Digits hidden_layer_size = 25; % 25 hidden units num_labels = 10; % 10 labels, from 1 to 10 % (note that we have mapped "0" to label 10) %% =========== Part 1: Loading and Visualizing Data ============= % We start the exercise by first loading and visualizing the dataset. % You will be working with a dataset that contains handwritten digits. % % Load Training Data fprintf('Loading and Visualizing Data ...\n') load('ex3data1.mat'); m = size(X, 1); % Randomly select 100 data points to display sel = randperm(size(X, 1)); sel = sel(1:100); displayData(X(sel, :)); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 2: Loading Pameters ================ % In this part of the exercise, we load some pre-initialized % neural network parameters. fprintf('\nLoading Saved Neural Network Parameters ...\n') % Load the weights into variables Theta1 and Theta2 load('ex3weights.mat'); %% ================= Part 3: Implement Predict ================= % After training the neural network, we would like to use it to predict % the labels. You will now implement the "predict" function to use the % neural network to predict the labels of the training set. This lets % you compute the training set accuracy. pred = predict(Theta1, Theta2, X); fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100); fprintf('Program paused. Press enter to continue.\n'); pause; % To give you an idea of the network's output, you can also run % through the examples one at the a time to see what it is predicting. % Randomly permute examples rp = randperm(m); for i = 1:m % Display fprintf('\nDisplaying Example Image\n'); displayData(X(rp(i), :)); pred = predict(Theta1, Theta2, X(rp(i),:)); fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10)); % Pause fprintf('Program paused. Press enter to continue.\n'); pause; end