%% Machine Learning Online Class % Exercise 7 | Principle Component Analysis and K-Means Clustering % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % pca.m % projectData.m % recoverData.m % computeCentroids.m % findClosestCentroids.m % kMeansInitCentroids.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% ================== Part 1: Load Example Dataset =================== % We start this exercise by using a small dataset that is easily to % visualize % fprintf('Visualizing example dataset for PCA.\n\n'); % The following command loads the dataset. You should now have the % variable X in your environment load ('ex7data1.mat'); % Visualize the example dataset plot(X(:, 1), X(:, 2), 'bo'); axis([0.5 6.5 2 8]); axis square; fprintf('Program paused. Press enter to continue.\n'); pause; %% =============== Part 2: Principal Component Analysis =============== % You should now implement PCA, a dimension reduction technique. You % should complete the code in pca.m % fprintf('\nRunning PCA on example dataset.\n\n'); % Before running PCA, it is important to first normalize X [X_norm, mu, sigma] = featureNormalize(X); % Run PCA [U, S] = pca(X_norm); % Compute mu, the mean of the each feature % Draw the eigenvectors centered at mean of data. These lines show the % directions of maximum variations in the dataset. hold on; drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)', '-k', 'LineWidth', 2); drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)', '-k', 'LineWidth', 2); hold off; fprintf('Top eigenvector: \n'); fprintf(' U(:,1) = %f %f \n', U(1,1), U(2,1)); fprintf('\n(you should expect to see -0.707107 -0.707107)\n'); fprintf('Program paused. Press enter to continue.\n'); pause; %% =================== Part 3: Dimension Reduction =================== % You should now implement the projection step to map the data onto the % first k eigenvectors. The code will then plot the data in this reduced % dimensional space. This will show you what the data looks like when % using only the corresponding eigenvectors to reconstruct it. % % You should complete the code in projectData.m % fprintf('\nDimension reduction on example dataset.\n\n'); % Plot the normalized dataset (returned from pca) plot(X_norm(:, 1), X_norm(:, 2), 'bo'); axis([-4 3 -4 3]); axis square % Project the data onto K = 1 dimension K = 1; Z = projectData(X_norm, U, K); fprintf('Projection of the first example: %f\n', Z(1)); fprintf('\n(this value should be about 1.481274)\n\n'); X_rec = recoverData(Z, U, K); fprintf('Approximation of the first example: %f %f\n', X_rec(1, 1), X_rec(1, 2)); fprintf('\n(this value should be about -1.047419 -1.047419)\n\n'); % Draw lines connecting the projected points to the original points hold on; plot(X_rec(:, 1), X_rec(:, 2), 'ro'); for i = 1:size(X_norm, 1) drawLine(X_norm(i,:), X_rec(i,:), '--k', 'LineWidth', 1); end hold off fprintf('Program paused. Press enter to continue.\n'); pause; %% =============== Part 4: Loading and Visualizing Face Data ============= % We start the exercise by first loading and visualizing the dataset. % The following code will load the dataset into your environment % fprintf('\nLoading face dataset.\n\n'); % Load Face dataset load ('ex7faces.mat') % Display the first 100 faces in the dataset displayData(X(1:100, :)); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 5: PCA on Face Data: Eigenfaces =================== % Run PCA and visualize the eigenvectors which are in this case eigenfaces % We display the first 36 eigenfaces. % fprintf(['\nRunning PCA on face dataset.\n' ... '(this mght take a minute or two ...)\n\n']); % Before running PCA, it is important to first normalize X by subtracting % the mean value from each feature [X_norm, mu, sigma] = featureNormalize(X); % Run PCA [U, S] = pca(X_norm); % Visualize the top 36 eigenvectors found displayData(U(:, 1:36)'); fprintf('Program paused. Press enter to continue.\n'); pause; %% ============= Part 6: Dimension Reduction for Faces ================= % Project images to the eigen space using the top k eigenvectors % If you are applying a machine learning algorithm fprintf('\nDimension reduction for face dataset.\n\n'); K = 100; Z = projectData(X_norm, U, K); fprintf('The projected data Z has a size of: ') fprintf('%d ', size(Z)); fprintf('\n\nProgram paused. Press enter to continue.\n'); pause; %% ==== Part 7: Visualization of Faces after PCA Dimension Reduction ==== % Project images to the eigen space using the top K eigen vectors and % visualize only using those K dimensions % Compare to the original input, which is also displayed fprintf('\nVisualizing the projected (reduced dimension) faces.\n\n'); K = 100; X_rec = recoverData(Z, U, K); % Display normalized data subplot(1, 2, 1); displayData(X_norm(1:100,:)); title('Original faces'); axis square; % Display reconstructed data from only k eigenfaces subplot(1, 2, 2); displayData(X_rec(1:100,:)); title('Recovered faces'); axis square; fprintf('Program paused. Press enter to continue.\n'); pause; %% === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization === % One useful application of PCA is to use it to visualize high-dimensional % data. In the last K-Means exercise you ran K-Means on 3-dimensional % pixel colors of an image. We first visualize this output in 3D, and then % apply PCA to obtain a visualization in 2D. close all; close all; clc % Re-load the image from the previous exercise and run K-Means on it % For this to work, you need to complete the K-Means assignment first A = double(imread('bird_small.png')); % If imread does not work for you, you can try instead % load ('bird_small.mat'); A = A / 255; img_size = size(A); X = reshape(A, img_size(1) * img_size(2), 3); K = 16; max_iters = 10; initial_centroids = kMeansInitCentroids(X, K); [centroids, idx] = runkMeans(X, initial_centroids, max_iters); % Sample 1000 random indexes (since working with all the data is % too expensive. If you have a fast computer, you may increase this. sel = floor(rand(1000, 1) * size(X, 1)) + 1; % Setup Color Palette palette = hsv(K); colors = palette(idx(sel), :); % Visualize the data and centroid memberships in 3D figure; scatter3(X(sel, 1), X(sel, 2), X(sel, 3), 10, colors); title('Pixel dataset plotted in 3D. Color shows centroid memberships'); fprintf('Program paused. Press enter to continue.\n'); pause; %% === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization === % Use PCA to project this cloud to 2D for visualization % Subtract the mean to use PCA [X_norm, mu, sigma] = featureNormalize(X); % PCA and project the data to 2D [U, S] = pca(X_norm); Z = projectData(X_norm, U, 2); % Plot in 2D figure; plotDataPoints(Z(sel, :), idx(sel), K); title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction'); fprintf('Program paused. Press enter to continue.\n'); pause;