27 lines
		
	
	
	
		
			907 B
		
	
	
	
		
			Matlab
		
	
	
	
	
	
			
		
		
	
	
			27 lines
		
	
	
	
		
			907 B
		
	
	
	
		
			Matlab
		
	
	
	
	
	
| function [J, grad] = costFunctionReg(theta, X, y, lambda)
 | |
| %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
 | |
| %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
 | |
| %   theta as the parameter for regularized logistic regression and the
 | |
| %   gradient of the cost w.r.t. to the parameters. 
 | |
| 
 | |
| % Initialize some useful values
 | |
| m = length(y); % number of training examples
 | |
| 
 | |
| % You need to return the following variables correctly 
 | |
| J = 0;
 | |
| grad = zeros(size(theta));
 | |
| 
 | |
| % ====================== YOUR CODE HERE ======================
 | |
| % Instructions: Compute the cost of a particular choice of theta.
 | |
| %               You should set J to the cost.
 | |
| %               Compute the partial derivatives and set grad to the partial
 | |
| %               derivatives of the cost w.r.t. each parameter in theta
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| % =============================================================
 | |
| 
 | |
| end
 |