Experiment with the OpenCV digits.py example
parent
16b142d94c
commit
47ba4b1b8a
@ -0,0 +1,220 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
This module contains some common routines used by other samples.
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
import itertools as it
|
||||
from contextlib import contextmanager
|
||||
|
||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||
|
||||
class Bunch(object):
|
||||
def __init__(self, **kw):
|
||||
self.__dict__.update(kw)
|
||||
def __str__(self):
|
||||
return str(self.__dict__)
|
||||
|
||||
def splitfn(fn):
|
||||
path, fn = os.path.split(fn)
|
||||
name, ext = os.path.splitext(fn)
|
||||
return path, name, ext
|
||||
|
||||
def anorm2(a):
|
||||
return (a*a).sum(-1)
|
||||
def anorm(a):
|
||||
return np.sqrt( anorm2(a) )
|
||||
|
||||
def homotrans(H, x, y):
|
||||
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
|
||||
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
|
||||
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
|
||||
return xs/s, ys/s
|
||||
|
||||
def to_rect(a):
|
||||
a = np.ravel(a)
|
||||
if len(a) == 2:
|
||||
a = (0, 0, a[0], a[1])
|
||||
return np.array(a, np.float64).reshape(2, 2)
|
||||
|
||||
def rect2rect_mtx(src, dst):
|
||||
src, dst = to_rect(src), to_rect(dst)
|
||||
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
|
||||
tx, ty = dst[0] - src[0] * (cx, cy)
|
||||
M = np.float64([[ cx, 0, tx],
|
||||
[ 0, cy, ty],
|
||||
[ 0, 0, 1]])
|
||||
return M
|
||||
|
||||
|
||||
def lookat(eye, target, up = (0, 0, 1)):
|
||||
fwd = np.asarray(target, np.float64) - eye
|
||||
fwd /= anorm(fwd)
|
||||
right = np.cross(fwd, up)
|
||||
right /= anorm(right)
|
||||
down = np.cross(fwd, right)
|
||||
R = np.float64([right, down, fwd])
|
||||
tvec = -np.dot(R, eye)
|
||||
return R, tvec
|
||||
|
||||
def mtx2rvec(R):
|
||||
w, u, vt = cv2.SVDecomp(R - np.eye(3))
|
||||
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
|
||||
c = np.dot(vt[0], p)
|
||||
s = np.dot(vt[1], p)
|
||||
axis = np.cross(vt[0], vt[1])
|
||||
return axis * np.arctan2(s, c)
|
||||
|
||||
def draw_str(dst, (x, y), s):
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
self.prev_pt = None
|
||||
self.windowname = windowname
|
||||
self.dests = dests
|
||||
self.colors_func = colors_func
|
||||
self.dirty = False
|
||||
self.show()
|
||||
cv2.setMouseCallback(self.windowname, self.on_mouse)
|
||||
|
||||
def show(self):
|
||||
cv2.imshow(self.windowname, self.dests[0])
|
||||
|
||||
def on_mouse(self, event, x, y, flags, param):
|
||||
pt = (x, y)
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.prev_pt = pt
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
self.prev_pt = None
|
||||
|
||||
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
for dst, color in zip(self.dests, self.colors_func()):
|
||||
cv2.line(dst, self.prev_pt, pt, color, 5)
|
||||
self.dirty = True
|
||||
self.prev_pt = pt
|
||||
self.show()
|
||||
|
||||
|
||||
# palette data from matplotlib/_cm.py
|
||||
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
|
||||
(1, 0.5, 0.5)),
|
||||
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
|
||||
(0.91,0,0), (1, 0, 0)),
|
||||
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
|
||||
(1, 0, 0))}
|
||||
|
||||
cmap_data = { 'jet' : _jet_data }
|
||||
|
||||
def make_cmap(name, n=256):
|
||||
data = cmap_data[name]
|
||||
xs = np.linspace(0.0, 1.0, n)
|
||||
channels = []
|
||||
eps = 1e-6
|
||||
for ch_name in ['blue', 'green', 'red']:
|
||||
ch_data = data[ch_name]
|
||||
xp, yp = [], []
|
||||
for x, y1, y2 in ch_data:
|
||||
xp += [x, x+eps]
|
||||
yp += [y1, y2]
|
||||
ch = np.interp(xs, xp, yp)
|
||||
channels.append(ch)
|
||||
return np.uint8(np.array(channels).T*255)
|
||||
|
||||
def nothing(*arg, **kw):
|
||||
pass
|
||||
|
||||
def clock():
|
||||
return cv2.getTickCount() / cv2.getTickFrequency()
|
||||
|
||||
@contextmanager
|
||||
def Timer(msg):
|
||||
print msg, '...',
|
||||
start = clock()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
print "%.2f ms" % ((clock()-start)*1000)
|
||||
|
||||
class StatValue:
|
||||
def __init__(self, smooth_coef = 0.5):
|
||||
self.value = None
|
||||
self.smooth_coef = smooth_coef
|
||||
def update(self, v):
|
||||
if self.value is None:
|
||||
self.value = v
|
||||
else:
|
||||
c = self.smooth_coef
|
||||
self.value = c * self.value + (1.0-c) * v
|
||||
|
||||
class RectSelector:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
cv2.setMouseCallback(win, self.onmouse)
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
x0, y0 = np.minimum([xo, yo], [x, y])
|
||||
x1, y1 = np.maximum([xo, yo], [x, y])
|
||||
self.drag_rect = None
|
||||
if x1-x0 > 0 and y1-y0 > 0:
|
||||
self.drag_rect = (x0, y0, x1, y1)
|
||||
else:
|
||||
rect = self.drag_rect
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
if rect:
|
||||
self.callback(rect)
|
||||
def draw(self, vis):
|
||||
if not self.drag_rect:
|
||||
return False
|
||||
x0, y0, x1, y1 = self.drag_rect
|
||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
return True
|
||||
@property
|
||||
def dragging(self):
|
||||
return self.drag_rect is not None
|
||||
|
||||
|
||||
def grouper(n, iterable, fillvalue=None):
|
||||
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
|
||||
args = [iter(iterable)] * n
|
||||
return it.izip_longest(fillvalue=fillvalue, *args)
|
||||
|
||||
def mosaic(w, imgs):
|
||||
'''Make a grid from images.
|
||||
|
||||
w -- number of grid columns
|
||||
imgs -- images (must have same size and format)
|
||||
'''
|
||||
imgs = iter(imgs)
|
||||
img0 = imgs.next()
|
||||
pad = np.zeros_like(img0)
|
||||
imgs = it.chain([img0], imgs)
|
||||
rows = grouper(w, imgs, pad)
|
||||
return np.vstack(map(np.hstack, rows))
|
||||
|
||||
def getsize(img):
|
||||
h, w = img.shape[:2]
|
||||
return w, h
|
||||
|
||||
def mdot(*args):
|
||||
return reduce(np.dot, args)
|
||||
|
||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||
for kp in keypoints:
|
||||
x, y = kp.pt
|
||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
Binary file not shown.
After Width: | Height: | Size: 704 KiB |
@ -0,0 +1,195 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
SVM and KNearest digit recognition.
|
||||
|
||||
Sample loads a dataset of handwritten digits from '../data/digits.png'.
|
||||
Then it trains a SVM and KNearest classifiers on it and evaluates
|
||||
their accuracy.
|
||||
|
||||
Following preprocessing is applied to the dataset:
|
||||
- Moment-based image deskew (see deskew())
|
||||
- Digit images are split into 4 10x10 cells and 16-bin
|
||||
histogram of oriented gradients is computed for each
|
||||
cell
|
||||
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
||||
|
||||
|
||||
[1] R. Arandjelovic, A. Zisserman
|
||||
"Three things everyone should know to improve object retrieval"
|
||||
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
||||
|
||||
Usage:
|
||||
digits.py
|
||||
'''
|
||||
|
||||
# built-in modules
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import cv2
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
# local modules
|
||||
from common import clock, mosaic
|
||||
|
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'digits.png'
|
||||
|
||||
def split2d(img, cell_size, flatten=True):
|
||||
h, w = img.shape[:2]
|
||||
sx, sy = cell_size
|
||||
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
||||
cells = np.array(cells)
|
||||
if flatten:
|
||||
cells = cells.reshape(-1, sy, sx)
|
||||
return cells
|
||||
|
||||
def load_digits(fn):
|
||||
print 'loading "%s" ...' % fn
|
||||
digits_img = cv2.imread(fn, 0)
|
||||
digits = split2d(digits_img, (SZ, SZ))
|
||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||
return digits, labels
|
||||
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
class StatModel(object):
|
||||
def load(self, fn):
|
||||
self.model.load(fn)
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
class KNearest(StatModel):
|
||||
def __init__(self, k = 3):
|
||||
self.k = k
|
||||
self.model = cv2.KNearest()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model = cv2.KNearest()
|
||||
self.model.train(samples, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k)
|
||||
return results.ravel()
|
||||
|
||||
class SVM(StatModel):
|
||||
def __init__(self, kernel_type=cv2.SVM_RBF, C=1, gamma=0.5):
|
||||
self.params = dict( kernel_type = kernel_type,
|
||||
svm_type = cv2.SVM_C_SVC,
|
||||
C = C,
|
||||
gamma = gamma )
|
||||
self.model = cv2.SVM()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model = cv2.SVM()
|
||||
self.model.train(samples, responses, params = self.params)
|
||||
|
||||
def train_auto(self, samples, responses):
|
||||
self.model = cv2.SVM()
|
||||
self.model.train_auto(samples, responses, None, None, params = self.params)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict_all(samples).ravel()
|
||||
|
||||
|
||||
def evaluate_model(model, digits, samples, labels):
|
||||
resp = model.predict(samples)
|
||||
err = (labels != resp).mean()
|
||||
print 'error: %.2f %%' % (err*100)
|
||||
|
||||
confusion = np.zeros((10, 10), np.int32)
|
||||
for i, j in zip(labels, resp):
|
||||
confusion[i, j] += 1
|
||||
print 'confusion matrix:'
|
||||
print confusion
|
||||
print
|
||||
|
||||
vis = []
|
||||
for img, flag in zip(digits, resp == labels):
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
if not flag:
|
||||
img[...,:2] = 0
|
||||
vis.append(img)
|
||||
return mosaic(25, vis)
|
||||
|
||||
def preprocess_simple(digits):
|
||||
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
def preprocess_hog(digits):
|
||||
samples = []
|
||||
for img in digits:
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists)
|
||||
|
||||
# transform to Hellinger kernel
|
||||
eps = 1e-7
|
||||
hist /= hist.sum() + eps
|
||||
hist = np.sqrt(hist)
|
||||
hist /= norm(hist) + eps
|
||||
|
||||
samples.append(hist)
|
||||
return np.float32(samples)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
digits, labels = load_digits(DIGITS_FN)
|
||||
|
||||
print 'preprocessing...'
|
||||
# shuffle digits
|
||||
rand = np.random.RandomState(321)
|
||||
shuffle = rand.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
|
||||
digits2 = map(deskew, digits)
|
||||
samples = preprocess_simple(digits2)
|
||||
#samples = preprocess_hog(digits2)
|
||||
|
||||
train_n = int(0.9*len(samples))
|
||||
cv2.imshow('test set', mosaic(25, digits[train_n:]))
|
||||
digits_train, digits_test = np.split(digits2, [train_n])
|
||||
samples_train, samples_test = np.split(samples, [train_n])
|
||||
labels_train, labels_test = np.split(labels, [train_n])
|
||||
|
||||
|
||||
print 'training KNearest...'
|
||||
model = KNearest(k=4)
|
||||
model.train(samples_train, labels_train)
|
||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
cv2.imshow('KNearest test', vis)
|
||||
|
||||
print 'training SVM...'
|
||||
|
||||
# HOG (original digits.py)
|
||||
#model = SVM(kernel_type=cv2.SVM_RBF, C=2.67, gamma=5.383)
|
||||
#model.train(samples_train, labels_train)
|
||||
# Simple (cross-validation)
|
||||
model = SVM(kernel_type=cv2.SVM_LINEAR, C=0.1)
|
||||
model.train(samples_train, labels_train)
|
||||
|
||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
cv2.imshow('SVM test', vis)
|
||||
print 'saving SVM as "digits_svm.dat"...'
|
||||
model.save('digits_svm.dat')
|
||||
|
||||
cv2.waitKey(0)
|
Loading…
Reference in New Issue