KalmanMouse: Restructure a bit
parent
f45dd535a0
commit
61896aa501
@ -1,82 +1,116 @@
|
||||
// http://opencvexamples.blogspot.com/2014/01/kalman-filter-implementation-tracking.html
|
||||
// (slightly cleaned up and patched to use opencv's gui functions)
|
||||
// (slightly cleaned up, restructured and patched to use opencv's gui functions)
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
|
||||
#define drawCross( center, color, d ) \
|
||||
line( img, Point( center.x - d, center.y - d ), Point( center.x + d, center.y + d ), color, 2, CV_AA, 0); \
|
||||
line( img, Point( center.x + d, center.y - d ), Point( center.x - d, center.y + d ), color, 2, CV_AA, 0 )
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
Point mousePos;
|
||||
|
||||
void mouseCallback(int event, int x, int y, int flags, void* userdata) {
|
||||
if ( event == EVENT_MOUSEMOVE ) {
|
||||
// save mouse position in the global mousePos.
|
||||
void saveMousePosCallback(int event, int x, int y, int flags, void* userdata) {
|
||||
if (event == EVENT_MOUSEMOVE) {
|
||||
mousePos.x = x;
|
||||
mousePos.y = y;
|
||||
}
|
||||
}
|
||||
|
||||
#define ADDNOISE 1
|
||||
|
||||
// measures the mouse position by reading from mousePos and adding some
|
||||
// artificial noise.
|
||||
Mat_<float> measure() {
|
||||
Mat_<float> measurement(2,1);
|
||||
Mat_<float> measurementNoise(2,1);
|
||||
|
||||
measurement(0) = mousePos.x;
|
||||
measurement(1) = mousePos.y;
|
||||
|
||||
#if ADDNOISE == 1
|
||||
Mat mean = Mat::zeros(1,1,CV_64FC1);
|
||||
Mat sigma = Mat::ones(1,1,CV_64FC1) * 5;
|
||||
randn(measurementNoise, mean, sigma);
|
||||
measurement += measurementNoise;
|
||||
#endif
|
||||
|
||||
return measurement;
|
||||
}
|
||||
|
||||
|
||||
// draw a cross
|
||||
void drawCross(Mat img, Point center, Scalar color, int d) {
|
||||
line(img, Point(center.x - d, center.y - d),
|
||||
Point(center.x + d, center.y + d), color, 2, CV_AA, 0);
|
||||
line(img, Point(center.x + d, center.y - d),
|
||||
Point(center.x - d, center.y + d), color, 2, CV_AA, 0);
|
||||
}
|
||||
|
||||
Mat img(600, 800, CV_8UC3);
|
||||
vector<Point> mousev, kalmanv;
|
||||
|
||||
void plot() {
|
||||
img = Scalar::all(0);
|
||||
|
||||
|
||||
Point statePt = kalmanv.back();
|
||||
Point measPt = mousev.back();
|
||||
drawCross(img, statePt, Scalar(255,255,255), 5);
|
||||
drawCross(img, measPt, Scalar(0,0,255), 5);
|
||||
|
||||
|
||||
for (int i = 0; i < mousev.size()-1; i++)
|
||||
line(img, mousev[i], mousev[i+1], Scalar(255,255,0), 1);
|
||||
|
||||
for (int i = 0; i < kalmanv.size()-1; i++)
|
||||
line(img, kalmanv[i], kalmanv[i+1], Scalar(0,155,255), 1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main() {
|
||||
namedWindow("mouse kalman", 1);
|
||||
setMouseCallback("mouse kalman", saveMousePosCallback, NULL);
|
||||
|
||||
|
||||
|
||||
// 4 state dimensions: x, y, dx, dy
|
||||
// 2 measurement dimensions: x, y
|
||||
KalmanFilter KF(4, 2, 0);
|
||||
|
||||
// intialization of KF...
|
||||
// transition matrix models: x' = x + dx, y' = y + dy, dx' = dx, dy' = dy
|
||||
KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
Mat_<float> measurement(2,1);
|
||||
|
||||
KF.statePre.at<float>(0) = mousePos.x;
|
||||
KF.statePre.at<float>(1) = mousePos.y;
|
||||
KF.statePre.at<float>(2) = 0;
|
||||
KF.statePre.at<float>(3) = 0;
|
||||
setIdentity(KF.measurementMatrix);
|
||||
setIdentity(KF.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF.processNoiseCov, Scalar::all(1e-3));
|
||||
setIdentity(KF.measurementNoiseCov, Scalar::all(10));
|
||||
setIdentity(KF.errorCovPost, Scalar::all(.1));
|
||||
// Image to show mouse tracking
|
||||
Mat img(600, 800, CV_8UC3);
|
||||
vector<Point> mousev,kalmanv;
|
||||
mousev.clear();
|
||||
kalmanv.clear();
|
||||
|
||||
namedWindow("mouse kalman", 1);
|
||||
setMouseCallback("mouse kalman", mouseCallback, NULL);
|
||||
|
||||
while(1) {
|
||||
|
||||
while (waitKey(10) < 0) {
|
||||
// First predict, to update the internal statePre variable
|
||||
Mat prediction = KF.predict();
|
||||
|
||||
|
||||
// The update phase
|
||||
measurement(0) = mousePos.x;
|
||||
measurement(1) = mousePos.y;
|
||||
Mat estimated = KF.correct(measurement);
|
||||
// Measure
|
||||
Mat_<float> measurement = measure();
|
||||
|
||||
|
||||
// Plot
|
||||
img = Scalar::all(0);
|
||||
// Update
|
||||
Mat_<float> estimated = KF.correct(measurement);
|
||||
|
||||
Point statePt(estimated.at<float>(0),estimated.at<float>(1));
|
||||
Point measPt(measurement(0),measurement(1));
|
||||
drawCross(statePt, Scalar(255,255,255), 5);
|
||||
drawCross(measPt, Scalar(0,0,255), 5);
|
||||
|
||||
// Save history
|
||||
Point statePt(estimated(0),estimated(1));
|
||||
Point measPt(measurement(0),measurement(1));
|
||||
mousev.push_back(measPt);
|
||||
kalmanv.push_back(statePt);
|
||||
|
||||
for (int i = 0; i < mousev.size()-1; i++)
|
||||
line(img, mousev[i], mousev[i+1], Scalar(255,255,0), 1);
|
||||
|
||||
for (int i = 0; i < kalmanv.size()-1; i++)
|
||||
line(img, kalmanv[i], kalmanv[i+1], Scalar(0,155,255), 1);
|
||||
|
||||
// Plot
|
||||
plot();
|
||||
imshow("mouse kalman", img);
|
||||
|
||||
waitKey(10);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue