KalmanMouse: Restructure a bit

master
neingeist 8 years ago
parent f45dd535a0
commit 61896aa501

@ -1,82 +1,116 @@
// http://opencvexamples.blogspot.com/2014/01/kalman-filter-implementation-tracking.html // http://opencvexamples.blogspot.com/2014/01/kalman-filter-implementation-tracking.html
// (slightly cleaned up and patched to use opencv's gui functions) // (slightly cleaned up, restructured and patched to use opencv's gui functions)
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include "opencv2/video/tracking.hpp" #include "opencv2/video/tracking.hpp"
#define drawCross( center, color, d ) \
line( img, Point( center.x - d, center.y - d ), Point( center.x + d, center.y + d ), color, 2, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ), Point( center.x - d, center.y + d ), color, 2, CV_AA, 0 )
using namespace cv; using namespace cv;
using namespace std; using namespace std;
Point mousePos; Point mousePos;
void mouseCallback(int event, int x, int y, int flags, void* userdata) { // save mouse position in the global mousePos.
if ( event == EVENT_MOUSEMOVE ) { void saveMousePosCallback(int event, int x, int y, int flags, void* userdata) {
if (event == EVENT_MOUSEMOVE) {
mousePos.x = x; mousePos.x = x;
mousePos.y = y; mousePos.y = y;
} }
} }
#define ADDNOISE 1
// measures the mouse position by reading from mousePos and adding some
// artificial noise.
Mat_<float> measure() {
Mat_<float> measurement(2,1);
Mat_<float> measurementNoise(2,1);
measurement(0) = mousePos.x;
measurement(1) = mousePos.y;
#if ADDNOISE == 1
Mat mean = Mat::zeros(1,1,CV_64FC1);
Mat sigma = Mat::ones(1,1,CV_64FC1) * 5;
randn(measurementNoise, mean, sigma);
measurement += measurementNoise;
#endif
return measurement;
}
// draw a cross
void drawCross(Mat img, Point center, Scalar color, int d) {
line(img, Point(center.x - d, center.y - d),
Point(center.x + d, center.y + d), color, 2, CV_AA, 0);
line(img, Point(center.x + d, center.y - d),
Point(center.x - d, center.y + d), color, 2, CV_AA, 0);
}
Mat img(600, 800, CV_8UC3);
vector<Point> mousev, kalmanv;
void plot() {
img = Scalar::all(0);
Point statePt = kalmanv.back();
Point measPt = mousev.back();
drawCross(img, statePt, Scalar(255,255,255), 5);
drawCross(img, measPt, Scalar(0,0,255), 5);
for (int i = 0; i < mousev.size()-1; i++)
line(img, mousev[i], mousev[i+1], Scalar(255,255,0), 1);
for (int i = 0; i < kalmanv.size()-1; i++)
line(img, kalmanv[i], kalmanv[i+1], Scalar(0,155,255), 1);
}
int main() { int main() {
namedWindow("mouse kalman", 1);
setMouseCallback("mouse kalman", saveMousePosCallback, NULL);
// 4 state dimensions: x, y, dx, dy
// 2 measurement dimensions: x, y
KalmanFilter KF(4, 2, 0); KalmanFilter KF(4, 2, 0);
// intialization of KF... // transition matrix models: x' = x + dx, y' = y + dy, dx' = dx, dy' = dy
KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
Mat_<float> measurement(2,1);
KF.statePre.at<float>(0) = mousePos.x;
KF.statePre.at<float>(1) = mousePos.y;
KF.statePre.at<float>(2) = 0;
KF.statePre.at<float>(3) = 0;
setIdentity(KF.measurementMatrix); setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-4)); setIdentity(KF.processNoiseCov, Scalar::all(1e-3));
setIdentity(KF.measurementNoiseCov, Scalar::all(10)); setIdentity(KF.measurementNoiseCov, Scalar::all(10));
setIdentity(KF.errorCovPost, Scalar::all(.1)); setIdentity(KF.errorCovPost, Scalar::all(.1));
// Image to show mouse tracking
Mat img(600, 800, CV_8UC3);
vector<Point> mousev,kalmanv;
mousev.clear();
kalmanv.clear();
namedWindow("mouse kalman", 1);
setMouseCallback("mouse kalman", mouseCallback, NULL);
while(1) {
while (waitKey(10) < 0) {
// First predict, to update the internal statePre variable // First predict, to update the internal statePre variable
Mat prediction = KF.predict(); Mat prediction = KF.predict();
// The update phase // Measure
measurement(0) = mousePos.x; Mat_<float> measurement = measure();
measurement(1) = mousePos.y;
Mat estimated = KF.correct(measurement);
// Plot // Update
img = Scalar::all(0); Mat_<float> estimated = KF.correct(measurement);
Point statePt(estimated.at<float>(0),estimated.at<float>(1));
Point measPt(measurement(0),measurement(1));
drawCross(statePt, Scalar(255,255,255), 5);
drawCross(measPt, Scalar(0,0,255), 5);
// Save history
Point statePt(estimated(0),estimated(1));
Point measPt(measurement(0),measurement(1));
mousev.push_back(measPt); mousev.push_back(measPt);
kalmanv.push_back(statePt); kalmanv.push_back(statePt);
for (int i = 0; i < mousev.size()-1; i++)
line(img, mousev[i], mousev[i+1], Scalar(255,255,0), 1);
for (int i = 0; i < kalmanv.size()-1; i++)
line(img, kalmanv[i], kalmanv[i+1], Scalar(0,155,255), 1);
// Plot
plot();
imshow("mouse kalman", img); imshow("mouse kalman", img);
waitKey(10);
} }
return 0;
} }

Loading…
Cancel
Save