From 70505f8c65e89c715432a2e4c360a6749d2d47ca Mon Sep 17 00:00:00 2001 From: neingeist Date: Sun, 19 Jan 2014 21:44:34 +0100 Subject: [PATCH] svm test now works with non-linearly separable data --- SVMTest.cpp | 33 ++++++++++++++++++++------------- 1 file changed, 20 insertions(+), 13 deletions(-) diff --git a/SVMTest.cpp b/SVMTest.cpp index 7a49108..9c983d6 100644 --- a/SVMTest.cpp +++ b/SVMTest.cpp @@ -11,23 +11,30 @@ int main() Mat image = Mat::zeros(height, width, CV_8UC3); // Set up training data - float labels[4] = {1.0, -1.0, -1.0, -1.0}; - Mat labelsMat(4, 1, CV_32FC1, labels); + Mat labelsMat = (Mat_(9, 1) << 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0); + Mat trainingDataMat = (Mat_(9, 2) << + 501, 10, 255, 255, 255, 305, 10, 1, 10, 500, 290, 290, 180, 290, 200, 200, 400, 400); - float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; - Mat trainingDataMat(4, 2, CV_32FC1, trainingData); + assert(labelsMat.rows == trainingDataMat.rows); // Set up SVM's parameters CvSVMParams params; params.svm_type = CvSVM::C_SVC; - params.kernel_type = CvSVM::LINEAR; - params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6); + params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 1e-6); + params.kernel_type = CvSVM::RBF; //CvSVM::RBF, CvSVM::LINEAR ... + params.degree = 1; // for poly + params.gamma = .0001; // for poly/rbf/sigmoid + params.coef0 = 0; // for poly/sigmoid + + params.C = 7; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR + params.nu = 0.0; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR + params.p = 0.0; // for CV_SVM_EPS_SVR // Train the SVM CvSVM SVM; SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params); - Vec3b green(0,255,0), blue (255,0,0); + Vec3b whiteish(200,200,200), blackish (55,55,55); // Show the decision regions given by the SVM for (int i = 0; i < image.rows; ++i) for (int j = 0; j < image.cols; ++j) @@ -36,18 +43,18 @@ int main() float response = SVM.predict(sampleMat); if (response == 1) - image.at(i,j) = green; + image.at(i,j) = whiteish; else if (response == -1) - image.at(i,j) = blue; + image.at(i,j) = blackish; } // Show the training data int thickness = -1; int lineType = 8; for (int i = 0; i < trainingDataMat.rows; i++) { - const CvScalar color = (labels[i] == 1) ? + const CvScalar color = (labelsMat.at(i) == 1) ? CV_RGB(255, 255, 255) : CV_RGB(0, 0, 0); - circle(image, Point(trainingData[i][0], trainingData[i][1]), 5, + circle(image, Point(trainingDataMat.at(i, 0), trainingDataMat.at(i, 1)), 5, color, thickness, lineType); } @@ -59,12 +66,12 @@ int main() for (int i = 0; i < c; ++i) { const float* v = SVM.get_support_vector(i); - circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType); + circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(0, 0, 128), thickness, lineType); } imwrite("result.png", image); // save the image - imshow("SVM Simple Example", image); // show it to the user + imshow("SVM Non-Linear Example", image); // show it to the user waitKey(0); }