use trainingdata array to show the training data
parent
cb8913ee16
commit
7d283f1a2f
@ -0,0 +1,70 @@
|
|||||||
|
#include <opencv2/core/core.hpp>
|
||||||
|
#include <opencv2/highgui/highgui.hpp>
|
||||||
|
#include <opencv2/ml/ml.hpp>
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
// Data for visual representation
|
||||||
|
int width = 512, height = 512;
|
||||||
|
Mat image = Mat::zeros(height, width, CV_8UC3);
|
||||||
|
|
||||||
|
// Set up training data
|
||||||
|
float labels[4] = {1.0, -1.0, -1.0, -1.0};
|
||||||
|
Mat labelsMat(4, 1, CV_32FC1, labels);
|
||||||
|
|
||||||
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
|
||||||
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
|
||||||
|
|
||||||
|
// Set up SVM's parameters
|
||||||
|
CvSVMParams params;
|
||||||
|
params.svm_type = CvSVM::C_SVC;
|
||||||
|
params.kernel_type = CvSVM::LINEAR;
|
||||||
|
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
|
||||||
|
|
||||||
|
// Train the SVM
|
||||||
|
CvSVM SVM;
|
||||||
|
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
|
||||||
|
|
||||||
|
Vec3b green(0,255,0), blue (255,0,0);
|
||||||
|
// Show the decision regions given by the SVM
|
||||||
|
for (int i = 0; i < image.rows; ++i)
|
||||||
|
for (int j = 0; j < image.cols; ++j)
|
||||||
|
{
|
||||||
|
Mat sampleMat = (Mat_<float>(1,2) << j,i);
|
||||||
|
float response = SVM.predict(sampleMat);
|
||||||
|
|
||||||
|
if (response == 1)
|
||||||
|
image.at<Vec3b>(i,j) = green;
|
||||||
|
else if (response == -1)
|
||||||
|
image.at<Vec3b>(i,j) = blue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Show the training data
|
||||||
|
int thickness = -1;
|
||||||
|
int lineType = 8;
|
||||||
|
for (int i = 0; i < trainingDataMat.rows; i++) {
|
||||||
|
const CvScalar color = (labels[i] == 1) ?
|
||||||
|
CV_RGB(255, 255, 255) : CV_RGB(0, 0, 0);
|
||||||
|
circle(image, Point(trainingData[i][0], trainingData[i][1]), 5,
|
||||||
|
color, thickness, lineType);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Show support vectors
|
||||||
|
thickness = 2;
|
||||||
|
lineType = 8;
|
||||||
|
int c = SVM.get_support_vector_count();
|
||||||
|
|
||||||
|
for (int i = 0; i < c; ++i)
|
||||||
|
{
|
||||||
|
const float* v = SVM.get_support_vector(i);
|
||||||
|
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
|
||||||
|
}
|
||||||
|
|
||||||
|
imwrite("result.png", image); // save the image
|
||||||
|
|
||||||
|
imshow("SVM Simple Example", image); // show it to the user
|
||||||
|
waitKey(0);
|
||||||
|
|
||||||
|
}
|
Loading…
Reference in New Issue