|
|
|
@ -9,14 +9,13 @@ b1 = Symbol('b1')
|
|
|
|
|
b2 = Symbol('b2')
|
|
|
|
|
|
|
|
|
|
# Data points
|
|
|
|
|
xn = [1, 2, 3, 4, 5, 7, 9]
|
|
|
|
|
yn = [6, 5, 7, 10, 11, 12, 14]
|
|
|
|
|
data = [(1,14), (2, 13), (3, 12), (4, 10), (5,9), (7,8), (9,5)]
|
|
|
|
|
|
|
|
|
|
# S is the function to minimize:
|
|
|
|
|
#
|
|
|
|
|
# For each data point the vertical error/residual is x*b1 + b2 - y. We want to
|
|
|
|
|
# minimize the sum of the squared residuals (least squares).
|
|
|
|
|
S = sum((xn[i] * b1 + b2 - yn[i]) ** 2 for i in range(0, len(xn)))
|
|
|
|
|
S = sum((p[0] * b1 + b2 - p[1]) ** 2 for p in data)
|
|
|
|
|
print("Function to minimize: S = {}".format(S))
|
|
|
|
|
|
|
|
|
|
# Minimize S by setting its partial derivatives to zero.
|
|
|
|
@ -32,9 +31,10 @@ print("Fitted line: y = {}".format(fitted_line))
|
|
|
|
|
|
|
|
|
|
# Construct something we can plot with matplotlib
|
|
|
|
|
fitted_line_func = lambdify(x, fitted_line, modules=['numpy'])
|
|
|
|
|
x_plot = np.linspace(min(xn), max(xn), 100)
|
|
|
|
|
x_plot = np.linspace(min(p[0] for p in data),
|
|
|
|
|
max(p[0] for p in data), 100)
|
|
|
|
|
|
|
|
|
|
# Plot data points and fitted line
|
|
|
|
|
plt.scatter(xn, yn, marker="+")
|
|
|
|
|
plt.scatter([p[0] for p in data], [p[1] for p in data], marker="+")
|
|
|
|
|
plt.plot(x_plot, fitted_line_func(x_plot), 'r')
|
|
|
|
|
plt.show()
|
|
|
|
|