add convex hull example from scipy cookbook
parent
70dd069f57
commit
fe5fbc70fc
@ -0,0 +1,96 @@
|
||||
# Example from http://wiki.scipy.org/Cookbook/Finding_Convex_Hull
|
||||
|
||||
import numpy as n
|
||||
import pylab as p
|
||||
import time
|
||||
|
||||
|
||||
def _angle_to_point(point, centre):
|
||||
'''calculate angle in 2-D between points and x axis'''
|
||||
delta = point - centre
|
||||
res = n.arctan(delta[1] / delta[0])
|
||||
if delta[0] < 0:
|
||||
res += n.pi
|
||||
return res
|
||||
|
||||
|
||||
def _draw_triangle(p1, p2, p3, **kwargs):
|
||||
tmp = n.vstack((p1, p2, p3))
|
||||
x, y = [x[0] for x in zip(tmp.transpose())]
|
||||
p.fill(x, y, **kwargs)
|
||||
# XXX time.sleep(0.2)
|
||||
|
||||
|
||||
def area_of_triangle(p1, p2, p3):
|
||||
'''calculate area of any triangle given co-ordinates of the corners'''
|
||||
return n.linalg.norm(n.cross((p2 - p1), (p3 - p1)))/2.
|
||||
|
||||
|
||||
def convex_hull(points, graphic=True, smidgen=0.0075):
|
||||
'''Calculate subset of points that make a convex hull around points
|
||||
|
||||
Recursively eliminates points that lie inside two neighbouring points until
|
||||
only convex hull is remaining.
|
||||
|
||||
:Parameters:
|
||||
points : ndarray (2 x m)
|
||||
array of points for which to find hull
|
||||
graphic : bool
|
||||
use pylab to show progress?
|
||||
smidgen : float
|
||||
offset for graphic number labels - useful values depend on your data
|
||||
range
|
||||
|
||||
:Returns:
|
||||
hull_points : ndarray (2 x n)
|
||||
convex hull surrounding points
|
||||
'''
|
||||
if graphic:
|
||||
p.clf()
|
||||
p.plot(points[0], points[1], 'ro')
|
||||
n_pts = points.shape[1]
|
||||
assert(n_pts > 5)
|
||||
centre = points.mean(1)
|
||||
if graphic:
|
||||
p.plot((centre[0], ), (centre[1], ), 'bo')
|
||||
angles = n.apply_along_axis(_angle_to_point, 0, points, centre)
|
||||
pts_ord = points[:, angles.argsort()]
|
||||
if graphic:
|
||||
for i in xrange(n_pts):
|
||||
p.text(pts_ord[0, i] + smidgen, pts_ord[1, i] + smidgen,
|
||||
'%d' % i)
|
||||
pts = [x[0] for x in zip(pts_ord.transpose())]
|
||||
prev_pts = len(pts) + 1
|
||||
k = 0
|
||||
while prev_pts > n_pts:
|
||||
prev_pts = n_pts
|
||||
n_pts = len(pts)
|
||||
if graphic:
|
||||
p.gca().patches = []
|
||||
i = -2
|
||||
while i < (n_pts - 2):
|
||||
Aij = area_of_triangle(centre, pts[i], pts[(i + 1) % n_pts])
|
||||
Ajk = area_of_triangle(centre, pts[(i + 1) % n_pts],
|
||||
pts[(i + 2) % n_pts])
|
||||
Aik = area_of_triangle(centre, pts[i], pts[(i + 2) % n_pts])
|
||||
if graphic:
|
||||
_draw_triangle(centre, pts[i], pts[(i + 1) % n_pts],
|
||||
facecolor='blue', alpha=0.2)
|
||||
_draw_triangle(centre, pts[(i + 1) % n_pts],
|
||||
pts[(i + 2) % n_pts],
|
||||
facecolor='green', alpha=0.2)
|
||||
_draw_triangle(centre, pts[i], pts[(i + 2) % n_pts],
|
||||
facecolor='red', alpha=0.2)
|
||||
if Aij + Ajk < Aik:
|
||||
if graphic:
|
||||
p.plot((pts[i + 1][0], ), (pts[i + 1][1], ), 'go')
|
||||
del pts[i+1]
|
||||
i += 1
|
||||
n_pts = len(pts)
|
||||
k += 1
|
||||
return n.asarray(pts)
|
||||
|
||||
if __name__ == "__main__":
|
||||
points = n.random.random_sample((2, 40))
|
||||
hull_pts = convex_hull(points)
|
||||
p.show()
|
Loading…
Reference in New Issue