You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1637 lines
55 KiB
C
1637 lines
55 KiB
C
/* -*- C -*- (not really, but good for syntax highlighting) */
|
|
#ifdef SWIGPYTHON
|
|
|
|
%{
|
|
#ifndef SWIG_FILE_WITH_INIT
|
|
# define NO_IMPORT_ARRAY
|
|
#endif
|
|
#include "stdio.h"
|
|
#include <numpy/arrayobject.h>
|
|
%}
|
|
|
|
/**********************************************************************/
|
|
|
|
%fragment("NumPy_Backward_Compatibility", "header")
|
|
{
|
|
/* Support older NumPy data type names
|
|
*/
|
|
%#if NDARRAY_VERSION < 0x01000000
|
|
%#define NPY_BOOL PyArray_BOOL
|
|
%#define NPY_BYTE PyArray_BYTE
|
|
%#define NPY_UBYTE PyArray_UBYTE
|
|
%#define NPY_SHORT PyArray_SHORT
|
|
%#define NPY_USHORT PyArray_USHORT
|
|
%#define NPY_INT PyArray_INT
|
|
%#define NPY_UINT PyArray_UINT
|
|
%#define NPY_LONG PyArray_LONG
|
|
%#define NPY_ULONG PyArray_ULONG
|
|
%#define NPY_LONGLONG PyArray_LONGLONG
|
|
%#define NPY_ULONGLONG PyArray_ULONGLONG
|
|
%#define NPY_FLOAT PyArray_FLOAT
|
|
%#define NPY_DOUBLE PyArray_DOUBLE
|
|
%#define NPY_LONGDOUBLE PyArray_LONGDOUBLE
|
|
%#define NPY_CFLOAT PyArray_CFLOAT
|
|
%#define NPY_CDOUBLE PyArray_CDOUBLE
|
|
%#define NPY_CLONGDOUBLE PyArray_CLONGDOUBLE
|
|
%#define NPY_OBJECT PyArray_OBJECT
|
|
%#define NPY_STRING PyArray_STRING
|
|
%#define NPY_UNICODE PyArray_UNICODE
|
|
%#define NPY_VOID PyArray_VOID
|
|
%#define NPY_NTYPES PyArray_NTYPES
|
|
%#define NPY_NOTYPE PyArray_NOTYPE
|
|
%#define NPY_CHAR PyArray_CHAR
|
|
%#define NPY_USERDEF PyArray_USERDEF
|
|
%#define npy_intp intp
|
|
|
|
%#define NPY_MAX_BYTE MAX_BYTE
|
|
%#define NPY_MIN_BYTE MIN_BYTE
|
|
%#define NPY_MAX_UBYTE MAX_UBYTE
|
|
%#define NPY_MAX_SHORT MAX_SHORT
|
|
%#define NPY_MIN_SHORT MIN_SHORT
|
|
%#define NPY_MAX_USHORT MAX_USHORT
|
|
%#define NPY_MAX_INT MAX_INT
|
|
%#define NPY_MIN_INT MIN_INT
|
|
%#define NPY_MAX_UINT MAX_UINT
|
|
%#define NPY_MAX_LONG MAX_LONG
|
|
%#define NPY_MIN_LONG MIN_LONG
|
|
%#define NPY_MAX_ULONG MAX_ULONG
|
|
%#define NPY_MAX_LONGLONG MAX_LONGLONG
|
|
%#define NPY_MIN_LONGLONG MIN_LONGLONG
|
|
%#define NPY_MAX_ULONGLONG MAX_ULONGLONG
|
|
%#define NPY_MAX_INTP MAX_INTP
|
|
%#define NPY_MIN_INTP MIN_INTP
|
|
|
|
%#define NPY_FARRAY FARRAY
|
|
%#define NPY_F_CONTIGUOUS F_CONTIGUOUS
|
|
%#endif
|
|
}
|
|
|
|
/**********************************************************************/
|
|
|
|
/* The following code originally appeared in
|
|
* enthought/kiva/agg/src/numeric.i written by Eric Jones. It was
|
|
* translated from C++ to C by John Hunter. Bill Spotz has modified
|
|
* it to fix some minor bugs, upgrade from Numeric to numpy (all
|
|
* versions), add some comments and functionality, and convert from
|
|
* direct code insertion to SWIG fragments.
|
|
*/
|
|
|
|
%fragment("NumPy_Macros", "header")
|
|
{
|
|
/* Macros to extract array attributes.
|
|
*/
|
|
%#define is_array(a) ((a) && PyArray_Check((PyArrayObject *)a))
|
|
%#define array_type(a) (int)(PyArray_TYPE(a))
|
|
%#define array_numdims(a) (((PyArrayObject *)a)->nd)
|
|
%#define array_dimensions(a) (((PyArrayObject *)a)->dimensions)
|
|
%#define array_size(a,i) (((PyArrayObject *)a)->dimensions[i])
|
|
%#define array_data(a) (((PyArrayObject *)a)->data)
|
|
%#define array_is_contiguous(a) (PyArray_ISCONTIGUOUS(a))
|
|
%#define array_is_native(a) (PyArray_ISNOTSWAPPED(a))
|
|
%#define array_is_fortran(a) (PyArray_ISFORTRAN(a))
|
|
}
|
|
|
|
/**********************************************************************/
|
|
|
|
%fragment("NumPy_Utilities", "header")
|
|
{
|
|
/* Given a PyObject, return a string describing its type.
|
|
*/
|
|
const char* pytype_string(PyObject* py_obj) {
|
|
if (py_obj == NULL ) return "C NULL value";
|
|
if (py_obj == Py_None ) return "Python None" ;
|
|
if (PyCallable_Check(py_obj)) return "callable" ;
|
|
if (PyString_Check( py_obj)) return "string" ;
|
|
if (PyInt_Check( py_obj)) return "int" ;
|
|
if (PyFloat_Check( py_obj)) return "float" ;
|
|
if (PyDict_Check( py_obj)) return "dict" ;
|
|
if (PyList_Check( py_obj)) return "list" ;
|
|
if (PyTuple_Check( py_obj)) return "tuple" ;
|
|
if (PyModule_Check( py_obj)) return "module" ;
|
|
%#if PY_MAJOR_VERSION < 3
|
|
if (PyFile_Check( py_obj)) return "file" ;
|
|
if (PyInstance_Check(py_obj)) return "instance" ;
|
|
%#endif
|
|
|
|
return "unkown type";
|
|
}
|
|
|
|
/* Given a NumPy typecode, return a string describing the type.
|
|
*/
|
|
const char* typecode_string(int typecode) {
|
|
static const char* type_names[25] = {"bool", "byte", "unsigned byte",
|
|
"short", "unsigned short", "int",
|
|
"unsigned int", "long", "unsigned long",
|
|
"long long", "unsigned long long",
|
|
"float", "double", "long double",
|
|
"complex float", "complex double",
|
|
"complex long double", "object",
|
|
"string", "unicode", "void", "ntypes",
|
|
"notype", "char", "unknown"};
|
|
return typecode < 24 ? type_names[typecode] : type_names[24];
|
|
}
|
|
|
|
/* Make sure input has correct numpy type. Allow character and byte
|
|
* to match. Also allow int and long to match. This is deprecated.
|
|
* You should use PyArray_EquivTypenums() instead.
|
|
*/
|
|
int type_match(int actual_type, int desired_type) {
|
|
return PyArray_EquivTypenums(actual_type, desired_type);
|
|
}
|
|
}
|
|
|
|
/**********************************************************************/
|
|
|
|
%fragment("NumPy_Object_to_Array", "header",
|
|
fragment="NumPy_Backward_Compatibility",
|
|
fragment="NumPy_Macros",
|
|
fragment="NumPy_Utilities")
|
|
{
|
|
/* Given a PyObject pointer, cast it to a PyArrayObject pointer if
|
|
* legal. If not, set the python error string appropriately and
|
|
* return NULL.
|
|
*/
|
|
PyArrayObject* obj_to_array_no_conversion(PyObject* input, int typecode)
|
|
{
|
|
PyArrayObject* ary = NULL;
|
|
if (is_array(input) && (typecode == NPY_NOTYPE ||
|
|
PyArray_EquivTypenums(array_type(input), typecode)))
|
|
{
|
|
ary = (PyArrayObject*) input;
|
|
}
|
|
else if is_array(input)
|
|
{
|
|
const char* desired_type = typecode_string(typecode);
|
|
const char* actual_type = typecode_string(array_type(input));
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Array of type '%s' required. Array of type '%s' given",
|
|
desired_type, actual_type);
|
|
ary = NULL;
|
|
}
|
|
else
|
|
{
|
|
const char * desired_type = typecode_string(typecode);
|
|
const char * actual_type = pytype_string(input);
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Array of type '%s' required. A '%s' was given",
|
|
desired_type, actual_type);
|
|
ary = NULL;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/* Convert the given PyObject to a NumPy array with the given
|
|
* typecode. On success, return a valid PyArrayObject* with the
|
|
* correct type. On failure, the python error string will be set and
|
|
* the routine returns NULL.
|
|
*/
|
|
PyArrayObject* obj_to_array_allow_conversion(PyObject* input, int typecode,
|
|
int* is_new_object)
|
|
{
|
|
PyArrayObject* ary = NULL;
|
|
PyObject* py_obj;
|
|
if (is_array(input) && (typecode == NPY_NOTYPE ||
|
|
PyArray_EquivTypenums(array_type(input),typecode)))
|
|
{
|
|
ary = (PyArrayObject*) input;
|
|
*is_new_object = 0;
|
|
}
|
|
else
|
|
{
|
|
py_obj = PyArray_FROMANY(input, typecode, 0, 0, NPY_DEFAULT);
|
|
/* If NULL, PyArray_FromObject will have set python error value.*/
|
|
ary = (PyArrayObject*) py_obj;
|
|
*is_new_object = 1;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/* Given a PyArrayObject, check to see if it is contiguous. If so,
|
|
* return the input pointer and flag it as not a new object. If it is
|
|
* not contiguous, create a new PyArrayObject using the original data,
|
|
* flag it as a new object and return the pointer.
|
|
*/
|
|
PyArrayObject* make_contiguous(PyArrayObject* ary, int* is_new_object,
|
|
int min_dims, int max_dims)
|
|
{
|
|
PyArrayObject* result;
|
|
if (array_is_contiguous(ary))
|
|
{
|
|
result = ary;
|
|
*is_new_object = 0;
|
|
}
|
|
else
|
|
{
|
|
result = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*)ary,
|
|
array_type(ary),
|
|
min_dims,
|
|
max_dims);
|
|
*is_new_object = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Given a PyArrayObject, check to see if it is Fortran-contiguous.
|
|
* If so, return the input pointer, but do not flag it as not a new
|
|
* object. If it is not Fortran-contiguous, create a new
|
|
* PyArrayObject using the original data, flag it as a new object
|
|
* and return the pointer.
|
|
*/
|
|
PyArrayObject* make_fortran(PyArrayObject* ary, int* is_new_object,
|
|
int min_dims, int max_dims)
|
|
{
|
|
PyArrayObject* result;
|
|
if (array_is_fortran(ary))
|
|
{
|
|
result = ary;
|
|
*is_new_object = 0;
|
|
}
|
|
else
|
|
{
|
|
Py_INCREF(ary->descr);
|
|
result = (PyArrayObject*) PyArray_FromArray(ary, ary->descr, NPY_FORTRAN);
|
|
*is_new_object = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Convert a given PyObject to a contiguous PyArrayObject of the
|
|
* specified type. If the input object is not a contiguous
|
|
* PyArrayObject, a new one will be created and the new object flag
|
|
* will be set.
|
|
*/
|
|
PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input,
|
|
int typecode,
|
|
int* is_new_object)
|
|
{
|
|
int is_new1 = 0;
|
|
int is_new2 = 0;
|
|
PyArrayObject* ary2;
|
|
PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode,
|
|
&is_new1);
|
|
if (ary1)
|
|
{
|
|
ary2 = make_contiguous(ary1, &is_new2, 0, 0);
|
|
if ( is_new1 && is_new2)
|
|
{
|
|
Py_DECREF(ary1);
|
|
}
|
|
ary1 = ary2;
|
|
}
|
|
*is_new_object = is_new1 || is_new2;
|
|
return ary1;
|
|
}
|
|
|
|
/* Convert a given PyObject to a Fortran-ordered PyArrayObject of the
|
|
* specified type. If the input object is not a Fortran-ordered
|
|
* PyArrayObject, a new one will be created and the new object flag
|
|
* will be set.
|
|
*/
|
|
PyArrayObject* obj_to_array_fortran_allow_conversion(PyObject* input,
|
|
int typecode,
|
|
int* is_new_object)
|
|
{
|
|
int is_new1 = 0;
|
|
int is_new2 = 0;
|
|
PyArrayObject* ary2;
|
|
PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode,
|
|
&is_new1);
|
|
if (ary1)
|
|
{
|
|
ary2 = make_fortran(ary1, &is_new2, 0, 0);
|
|
if (is_new1 && is_new2)
|
|
{
|
|
Py_DECREF(ary1);
|
|
}
|
|
ary1 = ary2;
|
|
}
|
|
*is_new_object = is_new1 || is_new2;
|
|
return ary1;
|
|
}
|
|
|
|
} /* end fragment */
|
|
|
|
|
|
/**********************************************************************/
|
|
|
|
%fragment("NumPy_Array_Requirements", "header",
|
|
fragment="NumPy_Backward_Compatibility",
|
|
fragment="NumPy_Macros")
|
|
{
|
|
/* Test whether a python object is contiguous. If array is
|
|
* contiguous, return 1. Otherwise, set the python error string and
|
|
* return 0.
|
|
*/
|
|
int require_contiguous(PyArrayObject* ary)
|
|
{
|
|
int contiguous = 1;
|
|
if (!array_is_contiguous(ary))
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"Array must be contiguous. A non-contiguous array was given");
|
|
contiguous = 0;
|
|
}
|
|
return contiguous;
|
|
}
|
|
|
|
/* Require that a numpy array is not byte-swapped. If the array is
|
|
* not byte-swapped, return 1. Otherwise, set the python error string
|
|
* and return 0.
|
|
*/
|
|
int require_native(PyArrayObject* ary)
|
|
{
|
|
int native = 1;
|
|
if (!array_is_native(ary))
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"Array must have native byteorder. "
|
|
"A byte-swapped array was given");
|
|
native = 0;
|
|
}
|
|
return native;
|
|
}
|
|
|
|
/* Require the given PyArrayObject to have a specified number of
|
|
* dimensions. If the array has the specified number of dimensions,
|
|
* return 1. Otherwise, set the python error string and return 0.
|
|
*/
|
|
int require_dimensions(PyArrayObject* ary, int exact_dimensions)
|
|
{
|
|
int success = 1;
|
|
if (array_numdims(ary) != exact_dimensions)
|
|
{
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Array must have %d dimensions. Given array has %d dimensions",
|
|
exact_dimensions, array_numdims(ary));
|
|
success = 0;
|
|
}
|
|
return success;
|
|
}
|
|
|
|
/* Require the given PyArrayObject to have one of a list of specified
|
|
* number of dimensions. If the array has one of the specified number
|
|
* of dimensions, return 1. Otherwise, set the python error string
|
|
* and return 0.
|
|
*/
|
|
int require_dimensions_n(PyArrayObject* ary, int* exact_dimensions, int n)
|
|
{
|
|
int success = 0;
|
|
int i;
|
|
char dims_str[255] = "";
|
|
char s[255];
|
|
for (i = 0; i < n && !success; i++)
|
|
{
|
|
if (array_numdims(ary) == exact_dimensions[i])
|
|
{
|
|
success = 1;
|
|
}
|
|
}
|
|
if (!success)
|
|
{
|
|
for (i = 0; i < n-1; i++)
|
|
{
|
|
sprintf(s, "%d, ", exact_dimensions[i]);
|
|
strcat(dims_str,s);
|
|
}
|
|
sprintf(s, " or %d", exact_dimensions[n-1]);
|
|
strcat(dims_str,s);
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Array must have %s dimensions. Given array has %d dimensions",
|
|
dims_str, array_numdims(ary));
|
|
}
|
|
return success;
|
|
}
|
|
|
|
/* Require the given PyArrayObject to have a specified shape. If the
|
|
* array has the specified shape, return 1. Otherwise, set the python
|
|
* error string and return 0.
|
|
*/
|
|
int require_size(PyArrayObject* ary, npy_intp* size, int n)
|
|
{
|
|
int i;
|
|
int success = 1;
|
|
int len;
|
|
char desired_dims[255] = "[";
|
|
char s[255];
|
|
char actual_dims[255] = "[";
|
|
for(i=0; i < n;i++)
|
|
{
|
|
if (size[i] != -1 && size[i] != array_size(ary,i))
|
|
{
|
|
success = 0;
|
|
}
|
|
}
|
|
if (!success)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (size[i] == -1)
|
|
{
|
|
sprintf(s, "*,");
|
|
}
|
|
else
|
|
{
|
|
sprintf(s, "%ld,", (long int)size[i]);
|
|
}
|
|
strcat(desired_dims,s);
|
|
}
|
|
len = strlen(desired_dims);
|
|
desired_dims[len-1] = ']';
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
sprintf(s, "%ld,", (long int)array_size(ary,i));
|
|
strcat(actual_dims,s);
|
|
}
|
|
len = strlen(actual_dims);
|
|
actual_dims[len-1] = ']';
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Array must have shape of %s. Given array has shape of %s",
|
|
desired_dims, actual_dims);
|
|
}
|
|
return success;
|
|
}
|
|
|
|
/* Require the given PyArrayObject to to be FORTRAN ordered. If the
|
|
* the PyArrayObject is already FORTRAN ordered, do nothing. Else,
|
|
* set the FORTRAN ordering flag and recompute the strides.
|
|
*/
|
|
int require_fortran(PyArrayObject* ary)
|
|
{
|
|
int success = 1;
|
|
int nd = array_numdims(ary);
|
|
int i;
|
|
if (array_is_fortran(ary)) return success;
|
|
/* Set the FORTRAN ordered flag */
|
|
ary->flags = NPY_FARRAY;
|
|
/* Recompute the strides */
|
|
ary->strides[0] = ary->strides[nd-1];
|
|
for (i=1; i < nd; ++i)
|
|
ary->strides[i] = ary->strides[i-1] * array_size(ary,i-1);
|
|
return success;
|
|
}
|
|
}
|
|
|
|
/* Combine all NumPy fragments into one for convenience */
|
|
%fragment("NumPy_Fragments", "header",
|
|
fragment="NumPy_Backward_Compatibility",
|
|
fragment="NumPy_Macros",
|
|
fragment="NumPy_Utilities",
|
|
fragment="NumPy_Object_to_Array",
|
|
fragment="NumPy_Array_Requirements") { }
|
|
|
|
/* End John Hunter translation (with modifications by Bill Spotz)
|
|
*/
|
|
|
|
/* %numpy_typemaps() macro
|
|
*
|
|
* This macro defines a family of 41 typemaps that allow C arguments
|
|
* of the form
|
|
*
|
|
* (DATA_TYPE IN_ARRAY1[ANY])
|
|
* (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
|
|
* (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
|
|
*
|
|
* (DATA_TYPE IN_ARRAY2[ANY][ANY])
|
|
* (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
|
|
* (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
|
|
*
|
|
* (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
|
|
* (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
|
|
* (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
|
|
*
|
|
* (DATA_TYPE INPLACE_ARRAY1[ANY])
|
|
* (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
|
|
* (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
|
|
*
|
|
* (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
|
|
* (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
|
|
* (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
|
|
*
|
|
* (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
|
|
* (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
|
|
* (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
* (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
|
|
*
|
|
* (DATA_TYPE ARGOUT_ARRAY1[ANY])
|
|
* (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
|
|
* (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
|
|
*
|
|
* (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
|
|
*
|
|
* (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
*
|
|
* (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
|
|
* (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
|
|
*
|
|
* (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
* (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
|
|
* (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
* (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
|
|
*
|
|
* (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
* (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
|
|
* (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
* (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
|
|
*
|
|
* where "DATA_TYPE" is any type supported by the NumPy module, and
|
|
* "DIM_TYPE" is any int-like type suitable for specifying dimensions.
|
|
* The difference between "ARRAY" typemaps and "FARRAY" typemaps is
|
|
* that the "FARRAY" typemaps expect FORTRAN ordering of
|
|
* multidimensional arrays. In python, the dimensions will not need
|
|
* to be specified (except for the "DATA_TYPE* ARGOUT_ARRAY1"
|
|
* typemaps). The IN_ARRAYs can be a numpy array or any sequence that
|
|
* can be converted to a numpy array of the specified type. The
|
|
* INPLACE_ARRAYs must be numpy arrays of the appropriate type. The
|
|
* ARGOUT_ARRAYs will be returned as new numpy arrays of the
|
|
* appropriate type.
|
|
*
|
|
* These typemaps can be applied to existing functions using the
|
|
* %apply directive. For example:
|
|
*
|
|
* %apply (double* IN_ARRAY1, int DIM1) {(double* series, int length)};
|
|
* double prod(double* series, int length);
|
|
*
|
|
* %apply (int DIM1, int DIM2, double* INPLACE_ARRAY2)
|
|
* {(int rows, int cols, double* matrix )};
|
|
* void floor(int rows, int cols, double* matrix, double f);
|
|
*
|
|
* %apply (double IN_ARRAY3[ANY][ANY][ANY])
|
|
* {(double tensor[2][2][2] )};
|
|
* %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
* {(double low[2][2][2] )};
|
|
* %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
* {(double upp[2][2][2] )};
|
|
* void luSplit(double tensor[2][2][2],
|
|
* double low[2][2][2],
|
|
* double upp[2][2][2] );
|
|
*
|
|
* or directly with
|
|
*
|
|
* double prod(double* IN_ARRAY1, int DIM1);
|
|
*
|
|
* void floor(int DIM1, int DIM2, double* INPLACE_ARRAY2, double f);
|
|
*
|
|
* void luSplit(double IN_ARRAY3[ANY][ANY][ANY],
|
|
* double ARGOUT_ARRAY3[ANY][ANY][ANY],
|
|
* double ARGOUT_ARRAY3[ANY][ANY][ANY]);
|
|
*/
|
|
|
|
%define %numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)
|
|
|
|
/************************/
|
|
/* Input Array Typemaps */
|
|
/************************/
|
|
|
|
/* Typemap suite for (DATA_TYPE IN_ARRAY1[ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE IN_ARRAY1[ANY])
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE IN_ARRAY1[ANY])
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[1] = { $1_dim0 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 1) ||
|
|
!require_size(array, size, 1)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE IN_ARRAY1[ANY])
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[1] = { -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 1) ||
|
|
!require_size(array, size, 1)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[1] = {-1};
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 1) ||
|
|
!require_size(array, size, 1)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE IN_ARRAY2[ANY][ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE IN_ARRAY2[ANY][ANY])
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE IN_ARRAY2[ANY][ANY])
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[2] = { $1_dim0, $1_dim1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 2) ||
|
|
!require_size(array, size, 2)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE IN_ARRAY2[ANY][ANY])
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[2] = { -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 2) ||
|
|
!require_size(array, size, 2)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[2] = { -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 2) ||
|
|
!require_size(array, size, 2)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[2] = { -1, -1 };
|
|
array = obj_to_array_fortran_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 2) ||
|
|
!require_size(array, size, 2) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[2] = { -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 2) ||
|
|
!require_size(array, size, 2) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 3) ||
|
|
!require_size(array, size, 3)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
|
|
* DIM_TYPE DIM3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[3] = { -1, -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 3) ||
|
|
!require_size(array, size, 3)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
$4 = (DIM_TYPE) array_size(array,2);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
|
|
* DATA_TYPE* IN_ARRAY3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[3] = { -1, -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 3) ||
|
|
!require_size(array, size, 3)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DIM_TYPE) array_size(array,2);
|
|
$4 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
|
|
* DIM_TYPE DIM3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[3] = { -1, -1, -1 };
|
|
array = obj_to_array_fortran_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 3) ||
|
|
!require_size(array, size, 3) | !require_fortran(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
$4 = (DIM_TYPE) array_size(array,2);
|
|
}
|
|
%typemap(freearg)
|
|
(DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
|
|
* DATA_TYPE* IN_FARRAY3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
|
|
{
|
|
$1 = is_array($input) || PySequence_Check($input);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
|
|
(PyArrayObject* array=NULL, int is_new_object=0)
|
|
{
|
|
npy_intp size[3] = { -1, -1, -1 };
|
|
array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE,
|
|
&is_new_object);
|
|
if (!array || !require_dimensions(array, 3) ||
|
|
!require_size(array, size, 3) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DIM_TYPE) array_size(array,2);
|
|
$4 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(freearg)
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
|
|
{
|
|
if (is_new_object$argnum && array$argnum)
|
|
{ Py_DECREF(array$argnum); }
|
|
}
|
|
|
|
/***************************/
|
|
/* In-Place Array Typemaps */
|
|
/***************************/
|
|
|
|
/* Typemap suite for (DATA_TYPE INPLACE_ARRAY1[ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE INPLACE_ARRAY1[ANY])
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE INPLACE_ARRAY1[ANY])
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
npy_intp size[1] = { $1_dim0 };
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,1) || !require_size(array, size, 1) ||
|
|
!require_contiguous(array) || !require_native(array)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
|
|
(PyArrayObject* array=NULL, int i=1)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,1) || !require_contiguous(array)
|
|
|| !require_native(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = 1;
|
|
for (i=0; i < array_numdims(array); ++i) $2 *= array_size(array,i);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
|
|
(PyArrayObject* array=NULL, int i=0)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,1) || !require_contiguous(array)
|
|
|| !require_native(array)) SWIG_fail;
|
|
$1 = 1;
|
|
for (i=0; i < array_numdims(array); ++i) $1 *= array_size(array,i);
|
|
$2 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
npy_intp size[2] = { $1_dim0, $1_dim1 };
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,2) || !require_size(array, size, 2) ||
|
|
!require_contiguous(array) || !require_native(array)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,2) || !require_contiguous(array)
|
|
|| !require_native(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,2) || !require_contiguous(array) ||
|
|
!require_native(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,2) || !require_contiguous(array)
|
|
|| !require_native(array) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,2) || !require_contiguous(array) ||
|
|
!require_native(array) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 };
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,3) || !require_size(array, size, 3) ||
|
|
!require_contiguous(array) || !require_native(array)) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
|
|
* DIM_TYPE DIM3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,3) || !require_contiguous(array) ||
|
|
!require_native(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
$4 = (DIM_TYPE) array_size(array,2);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
|
|
* DATA_TYPE* INPLACE_ARRAY3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,3) || !require_contiguous(array)
|
|
|| !require_native(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DIM_TYPE) array_size(array,2);
|
|
$4 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
|
|
* DIM_TYPE DIM3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,3) || !require_contiguous(array) ||
|
|
!require_native(array) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
$2 = (DIM_TYPE) array_size(array,0);
|
|
$3 = (DIM_TYPE) array_size(array,1);
|
|
$4 = (DIM_TYPE) array_size(array,2);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
|
|
* DATA_TYPE* INPLACE_FARRAY3)
|
|
*/
|
|
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
|
|
fragment="NumPy_Macros")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
|
|
{
|
|
$1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
|
|
DATA_TYPECODE);
|
|
}
|
|
%typemap(in,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
|
|
(PyArrayObject* array=NULL)
|
|
{
|
|
array = obj_to_array_no_conversion($input, DATA_TYPECODE);
|
|
if (!array || !require_dimensions(array,3) || !require_contiguous(array)
|
|
|| !require_native(array) || !require_fortran(array)) SWIG_fail;
|
|
$1 = (DIM_TYPE) array_size(array,0);
|
|
$2 = (DIM_TYPE) array_size(array,1);
|
|
$3 = (DIM_TYPE) array_size(array,2);
|
|
$4 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
|
|
/*************************/
|
|
/* Argout Array Typemaps */
|
|
/*************************/
|
|
|
|
/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY1[ANY])
|
|
*/
|
|
%typemap(in,numinputs=0,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Macros")
|
|
(DATA_TYPE ARGOUT_ARRAY1[ANY])
|
|
(PyObject * array = NULL)
|
|
{
|
|
npy_intp dims[1] = { $1_dim0 };
|
|
array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
|
|
if (!array) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(argout)
|
|
(DATA_TYPE ARGOUT_ARRAY1[ANY])
|
|
{
|
|
$result = SWIG_Python_AppendOutput($result,array$argnum);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
|
|
*/
|
|
%typemap(in,numinputs=1,
|
|
fragment="NumPy_Fragments")
|
|
(DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
|
|
(PyObject * array = NULL)
|
|
{
|
|
npy_intp dims[1];
|
|
if (!PyInt_Check($input))
|
|
{
|
|
const char* typestring = pytype_string($input);
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Int dimension expected. '%s' given.",
|
|
typestring);
|
|
SWIG_fail;
|
|
}
|
|
$2 = (DIM_TYPE) PyInt_AsLong($input);
|
|
dims[0] = (npy_intp) $2;
|
|
array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
|
|
if (!array) SWIG_fail;
|
|
$1 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(argout)
|
|
(DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
|
|
{
|
|
$result = SWIG_Python_AppendOutput($result,array$argnum);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
|
|
*/
|
|
%typemap(in,numinputs=1,
|
|
fragment="NumPy_Fragments")
|
|
(DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
|
|
(PyObject * array = NULL)
|
|
{
|
|
npy_intp dims[1];
|
|
if (!PyInt_Check($input))
|
|
{
|
|
const char* typestring = pytype_string($input);
|
|
PyErr_Format(PyExc_TypeError,
|
|
"Int dimension expected. '%s' given.",
|
|
typestring);
|
|
SWIG_fail;
|
|
}
|
|
$1 = (DIM_TYPE) PyInt_AsLong($input);
|
|
dims[0] = (npy_intp) $1;
|
|
array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
|
|
if (!array) SWIG_fail;
|
|
$2 = (DATA_TYPE*) array_data(array);
|
|
}
|
|
%typemap(argout)
|
|
(DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
|
|
{
|
|
$result = SWIG_Python_AppendOutput($result,array$argnum);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
|
|
*/
|
|
%typemap(in,numinputs=0,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Macros")
|
|
(DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
|
|
(PyObject * array = NULL)
|
|
{
|
|
npy_intp dims[2] = { $1_dim0, $1_dim1 };
|
|
array = PyArray_SimpleNew(2, dims, DATA_TYPECODE);
|
|
if (!array) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(argout)
|
|
(DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
|
|
{
|
|
$result = SWIG_Python_AppendOutput($result,array$argnum);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
*/
|
|
%typemap(in,numinputs=0,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Macros")
|
|
(DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
(PyObject * array = NULL)
|
|
{
|
|
npy_intp dims[3] = { $1_dim0, $1_dim1, $1_dim2 };
|
|
array = PyArray_SimpleNew(3, dims, DATA_TYPECODE);
|
|
if (!array) SWIG_fail;
|
|
$1 = ($1_ltype) array_data(array);
|
|
}
|
|
%typemap(argout)
|
|
(DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
|
|
{
|
|
$result = SWIG_Python_AppendOutput($result,array$argnum);
|
|
}
|
|
|
|
/*****************************/
|
|
/* Argoutview Array Typemaps */
|
|
/*****************************/
|
|
|
|
/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1 )
|
|
(DATA_TYPE* data_temp , DIM_TYPE dim_temp)
|
|
{
|
|
$1 = &data_temp;
|
|
$2 = &dim_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
|
|
{
|
|
npy_intp dims[1] = { *$2 };
|
|
PyObject * array = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$1));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DIM_TYPE* DIM1 , DATA_TYPE** ARGOUTVIEW_ARRAY1)
|
|
(DIM_TYPE dim_temp, DATA_TYPE* data_temp )
|
|
{
|
|
$1 = &dim_temp;
|
|
$2 = &data_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
|
|
{
|
|
npy_intp dims[1] = { *$1 };
|
|
PyObject * array = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$2));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 )
|
|
(DATA_TYPE* data_temp , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp)
|
|
{
|
|
$1 = &data_temp;
|
|
$2 = &dim1_temp;
|
|
$3 = &dim2_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
{
|
|
npy_intp dims[2] = { *$2, *$3 };
|
|
PyObject * array = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_ARRAY2)
|
|
(DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp )
|
|
{
|
|
$1 = &dim1_temp;
|
|
$2 = &dim2_temp;
|
|
$3 = &data_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
|
|
{
|
|
npy_intp dims[2] = { *$1, *$2 };
|
|
PyObject * array = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 )
|
|
(DATA_TYPE* data_temp , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp)
|
|
{
|
|
$1 = &data_temp;
|
|
$2 = &dim1_temp;
|
|
$3 = &dim2_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
|
|
(DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
|
|
{
|
|
npy_intp dims[2] = { *$2, *$3 };
|
|
PyObject * obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1));
|
|
PyArrayObject * array = (PyArrayObject*) obj;
|
|
if (!array || !require_fortran(array)) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,obj);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_FARRAY2)
|
|
(DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp )
|
|
{
|
|
$1 = &dim1_temp;
|
|
$2 = &dim2_temp;
|
|
$3 = &data_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
|
|
{
|
|
npy_intp dims[2] = { *$1, *$2 };
|
|
PyObject * obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3));
|
|
PyArrayObject * array = (PyArrayObject*) obj;
|
|
if (!array || !require_fortran(array)) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,obj);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
|
|
DIM_TYPE* DIM3)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
(DATA_TYPE* data_temp, DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp)
|
|
{
|
|
$1 = &data_temp;
|
|
$2 = &dim1_temp;
|
|
$3 = &dim2_temp;
|
|
$4 = &dim3_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
{
|
|
npy_intp dims[3] = { *$2, *$3, *$4 };
|
|
PyObject * array = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3,
|
|
DATA_TYPE** ARGOUTVIEW_ARRAY3)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
|
|
(DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp)
|
|
{
|
|
$1 = &dim1_temp;
|
|
$2 = &dim2_temp;
|
|
$3 = &dim3_temp;
|
|
$4 = &data_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility")
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
|
|
{
|
|
npy_intp dims[3] = { *$1, *$2, *$3 };
|
|
PyObject * array = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$3));
|
|
if (!array) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,array);
|
|
}
|
|
|
|
/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
|
|
DIM_TYPE* DIM3)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
(DATA_TYPE* data_temp, DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp)
|
|
{
|
|
$1 = &data_temp;
|
|
$2 = &dim1_temp;
|
|
$3 = &dim2_temp;
|
|
$4 = &dim3_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
|
|
(DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
|
|
{
|
|
npy_intp dims[3] = { *$2, *$3, *$4 };
|
|
PyObject * obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1));
|
|
PyArrayObject * array = (PyArrayObject*) obj;
|
|
if (!array || require_fortran(array)) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,obj);
|
|
}
|
|
|
|
/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3,
|
|
DATA_TYPE** ARGOUTVIEW_FARRAY3)
|
|
*/
|
|
%typemap(in,numinputs=0)
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
|
|
(DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp)
|
|
{
|
|
$1 = &dim1_temp;
|
|
$2 = &dim2_temp;
|
|
$3 = &dim3_temp;
|
|
$4 = &data_temp;
|
|
}
|
|
%typemap(argout,
|
|
fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
|
|
(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
|
|
{
|
|
npy_intp dims[3] = { *$1, *$2, *$3 };
|
|
PyObject * obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$3));
|
|
PyArrayObject * array = (PyArrayObject*) obj;
|
|
if (!array || require_fortran(array)) SWIG_fail;
|
|
$result = SWIG_Python_AppendOutput($result,obj);
|
|
}
|
|
|
|
%enddef /* %numpy_typemaps() macro */
|
|
/* *************************************************************** */
|
|
|
|
/* Concrete instances of the %numpy_typemaps() macro: Each invocation
|
|
* below applies all of the typemaps above to the specified data type.
|
|
*/
|
|
%numpy_typemaps(signed char , NPY_BYTE , int)
|
|
%numpy_typemaps(unsigned char , NPY_UBYTE , int)
|
|
%numpy_typemaps(short , NPY_SHORT , int)
|
|
%numpy_typemaps(unsigned short , NPY_USHORT , int)
|
|
%numpy_typemaps(int , NPY_INT , int)
|
|
%numpy_typemaps(unsigned int , NPY_UINT , int)
|
|
%numpy_typemaps(long , NPY_LONG , int)
|
|
%numpy_typemaps(unsigned long , NPY_ULONG , int)
|
|
%numpy_typemaps(long long , NPY_LONGLONG , int)
|
|
%numpy_typemaps(unsigned long long, NPY_ULONGLONG, int)
|
|
%numpy_typemaps(float , NPY_FLOAT , int)
|
|
%numpy_typemaps(double , NPY_DOUBLE , int)
|
|
|
|
/* ***************************************************************
|
|
* The follow macro expansion does not work, because C++ bool is 4
|
|
* bytes and NPY_BOOL is 1 byte
|
|
*
|
|
* %numpy_typemaps(bool, NPY_BOOL, int)
|
|
*/
|
|
|
|
/* ***************************************************************
|
|
* On my Mac, I get the following warning for this macro expansion:
|
|
* 'swig/python detected a memory leak of type 'long double *', no destructor found.'
|
|
*
|
|
* %numpy_typemaps(long double, NPY_LONGDOUBLE, int)
|
|
*/
|
|
|
|
/* ***************************************************************
|
|
* Swig complains about a syntax error for the following macro
|
|
* expansions:
|
|
*
|
|
* %numpy_typemaps(complex float, NPY_CFLOAT , int)
|
|
*
|
|
* %numpy_typemaps(complex double, NPY_CDOUBLE, int)
|
|
*
|
|
* %numpy_typemaps(complex long double, NPY_CLONGDOUBLE, int)
|
|
*/
|
|
|
|
#endif /* SWIGPYTHON */
|