use Levenshtein.normalized_distance instead of distance

pull/129/head
Robert Sachunsky 1 month ago committed by Mike Gerber
parent f6dfb77f94
commit 0583d8c0f0

@ -20,14 +20,7 @@ def character_error_rate_n(
:return: character error rate and length of the reference
"""
d = distance(reference, compared)
n = len(reference)
if d == 0:
return 0, n
if n == 0:
return float("inf"), n
return d / n, n
return distance(reference, compared), len(reference)
# XXX Should we really count newlines here?

@ -9,18 +9,18 @@ from .extracted_text import ExtractedText
@multimethod
def distance(seq1: List[str], seq2: List[str]) -> int:
def distance(seq1: List[str], seq2: List[str]) -> float:
"""Compute the Levenshtein edit distance between two lists of grapheme clusters.
This assumes that the grapheme clusters are already normalized.
Use distance(str, str) instead if you need to compare two Unicode strings.
"""
return Levenshtein.distance(seq1, seq2)
return Levenshtein.normalized_distance(seq1, seq2)
@distance.register
def _(s1: str, s2: str) -> int:
def _(s1: str, s2: str) -> float:
"""Compute the Levenshtein edit distance between two Unicode strings
Note that this is different from levenshtein() as this function knows about Unicode
@ -29,12 +29,12 @@ def _(s1: str, s2: str) -> int:
"""
seq1 = list(grapheme_clusters(unicodedata.normalize("NFC", s1)))
seq2 = list(grapheme_clusters(unicodedata.normalize("NFC", s2)))
return Levenshtein.distance(seq1, seq2)
return Levenshtein.normalized_distance(seq1, seq2)
@distance.register
def _(s1: ExtractedText, s2: ExtractedText) -> int:
return Levenshtein.distance(s1.grapheme_clusters, s2.grapheme_clusters)
def _(s1: ExtractedText, s2: ExtractedText) -> float:
return Levenshtein.normalized_distance(s1.grapheme_clusters, s2.grapheme_clusters)
def editops(word1, word2):

@ -96,15 +96,10 @@ def _(reference: Iterable[T], compared: Iterable[T]) -> Tuple[float, int]:
reference_seq = list(reference)
compared_seq = list(compared)
d = Levenshtein.distance(reference_seq, compared_seq)
d = Levenshtein.normalized_distance(reference_seq, compared_seq)
n = len(reference_seq)
if d == 0:
return 0, n
if n == 0:
return float("inf"), n
return d / n, n
return d, n
def word_error_rate(reference: T, compared: T) -> float:
wer: float

Loading…
Cancel
Save