|
|
|
@ -18,62 +18,20 @@
|
|
|
|
|
"# Levenshtein edit distance"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"dinglehopper uses to have its own (very inefficient) Levenshtein edit distance implementation, but now uses RapidFuzz."
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def levenshtein_matrix(seq1, seq2):\n",
|
|
|
|
|
" \"\"\"Compute the matrix commonly computed to produce the Levenshtein distance.\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" This is also known as the Wagner-Fischer algorithm. The matrix element at the bottom right contains the desired\n",
|
|
|
|
|
" edit distance.\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" This algorithm is implemented here because we need an implementation that can work with sequences other than\n",
|
|
|
|
|
" strings, e.g. lists of grapheme clusters or lists of word strings.\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" m = len(seq1)\n",
|
|
|
|
|
" n = len(seq2)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def from_to(start, stop):\n",
|
|
|
|
|
" return range(start, stop + 1, 1)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" D = np.zeros((m + 1, n + 1), np.int)\n",
|
|
|
|
|
" D[0, 0] = 0\n",
|
|
|
|
|
" for i in from_to(1, m):\n",
|
|
|
|
|
" D[i, 0] = i\n",
|
|
|
|
|
" for j in from_to(1, n):\n",
|
|
|
|
|
" D[0, j] = j\n",
|
|
|
|
|
" for i in from_to(1, m):\n",
|
|
|
|
|
" for j in from_to(1, n):\n",
|
|
|
|
|
" D[i, j] = min(\n",
|
|
|
|
|
" D[i - 1, j - 1] + 1 * (seq1[i - 1] != seq2[j - 1]), # Same or Substitution\n",
|
|
|
|
|
" D[i, j - 1] + 1, # Insertion\n",
|
|
|
|
|
" D[i - 1, j] + 1 # Deletion\n",
|
|
|
|
|
" )\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" return D\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"def levenshtein(seq1, seq2):\n",
|
|
|
|
|
" \"\"\"Compute the Levenshtein edit distance between two sequences\"\"\"\n",
|
|
|
|
|
" m = len(seq1)\n",
|
|
|
|
|
" n = len(seq2)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" D = levenshtein_matrix(seq1, seq2)\n",
|
|
|
|
|
" return D[m, n]\n",
|
|
|
|
|
"\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"from edit_distance import levenshtein_matrix, levenshtein\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"print(inspect.getsource(levenshtein_matrix))\n",
|
|
|
|
|
"print(inspect.getsource(levenshtein))"
|
|
|
|
|
"from rapidfuzz.string_metric import levenshtein"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -170,21 +128,23 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def distance(s1, s2):\n",
|
|
|
|
|
"@multimethod\n",
|
|
|
|
|
"def distance(s1: str, s2: str):\n",
|
|
|
|
|
" \"\"\"Compute the Levenshtein edit distance between two Unicode strings\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" Note that this is different from levenshtein() as this function knows about Unicode normalization and grapheme\n",
|
|
|
|
|
" clusters. This should be the correct way to compare two Unicode strings.\n",
|
|
|
|
|
" Note that this is different from levenshtein() as this function knows about Unicode\n",
|
|
|
|
|
" normalization and grapheme clusters. This should be the correct way to compare two\n",
|
|
|
|
|
" Unicode strings.\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" s1 = list(grapheme_clusters(unicodedata.normalize('NFC', s1)))\n",
|
|
|
|
|
" s2 = list(grapheme_clusters(unicodedata.normalize('NFC', s2)))\n",
|
|
|
|
|
" return levenshtein(s1, s2)\n",
|
|
|
|
|
" seq1 = list(grapheme_clusters(unicodedata.normalize(\"NFC\", s1)))\n",
|
|
|
|
|
" seq2 = list(grapheme_clusters(unicodedata.normalize(\"NFC\", s2)))\n",
|
|
|
|
|
" return levenshtein(seq1, seq2)\n",
|
|
|
|
|
"\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from edit_distance import distance\n",
|
|
|
|
|
"from qurator.dinglehopper.edit_distance import distance\n",
|
|
|
|
|
"print(inspect.getsource(distance))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -247,8 +207,7 @@
|
|
|
|
|
"source": [
|
|
|
|
|
"# Edit operations\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"python-Levenshtein supports backtracing, i.e. giving a sequence of edit options that transforms a word to another word:\n",
|
|
|
|
|
"\n"
|
|
|
|
|
"python-Levenshtein + RapidFuzz supports backtracing, i.e. giving a sequence of edit options that transforms a word to another word:"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -257,32 +216,20 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[('insert', 5, 5), ('replace', 5, 6)]\n"
|
|
|
|
|
]
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"[('replace', 2, 2)]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 9,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import Levenshtein\n",
|
|
|
|
|
"word1 = 'Schlyñ' # with LATIN SMALL LETTER N WITH TILDE\n",
|
|
|
|
|
"word2 = 'Schlym̃' # with LATIN SMALL LETTER M + COMBINING TILDE\n",
|
|
|
|
|
"print(Levenshtein.editops(word1, word2))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"Note that it does not work with grapheme clusters, but \"characters\", so it gives 2 operations."
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"Defining our own `editops()`. (This looks a bit wild due to our own tail recursion handling.)"
|
|
|
|
|
"from rapidfuzz.string_metric import levenshtein_editops as editops\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"editops('Foo', 'Fon')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -294,47 +241,12 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def seq_editops(seq1, seq2):\n",
|
|
|
|
|
" seq1 = list(seq1)\n",
|
|
|
|
|
" seq2 = list(seq2)\n",
|
|
|
|
|
" m = len(seq1)\n",
|
|
|
|
|
" n = len(seq2)\n",
|
|
|
|
|
" D = levenshtein_matrix(seq1, seq2)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def _tail_backtrace(i, j, accumulator):\n",
|
|
|
|
|
" if i > 0 and D[i - 1, j] + 1 == D[i, j]:\n",
|
|
|
|
|
" return partial(_tail_backtrace, i - 1, j, [('delete', i-1, j)] + accumulator)\n",
|
|
|
|
|
" if j > 0 and D[i, j - 1] + 1 == D[i, j]:\n",
|
|
|
|
|
" return partial(_tail_backtrace, i, j - 1, [('insert', i, j-1)] + accumulator)\n",
|
|
|
|
|
" if i > 0 and j > 0 and D[i - 1, j - 1] + 1 == D[i, j]:\n",
|
|
|
|
|
" return partial(_tail_backtrace, i - 1, j - 1, [('replace', i-1, j-1)] + accumulator)\n",
|
|
|
|
|
" if i > 0 and j > 0 and D[i - 1, j - 1] == D[i, j]:\n",
|
|
|
|
|
" return partial(_tail_backtrace, i - 1, j - 1, accumulator) # NOP\n",
|
|
|
|
|
" return accumulator\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def backtrace(i, j):\n",
|
|
|
|
|
" result = partial(_tail_backtrace, i, j, [])\n",
|
|
|
|
|
" while isinstance(result, partial):\n",
|
|
|
|
|
" result = result()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" return result\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" b = backtrace(m, n)\n",
|
|
|
|
|
" return b\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"def editops(word1, word2):\n",
|
|
|
|
|
" # XXX Note that this returns indices to the _grapheme clusters_, not characters!\n",
|
|
|
|
|
" word1 = list(grapheme_clusters(unicodedata.normalize('NFC', word1)))\n",
|
|
|
|
|
" word2 = list(grapheme_clusters(unicodedata.normalize('NFC', word2)))\n",
|
|
|
|
|
" return seq_editops(word1, word2)\n",
|
|
|
|
|
"\n"
|
|
|
|
|
"[('insert', 4, 4)]\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from edit_distance import seq_editops, editops\n",
|
|
|
|
|
"print(inspect.getsource(seq_editops))\n",
|
|
|
|
|
"print(inspect.getsource(editops))"
|
|
|
|
|
"print(editops('Käptn', 'Käpt\\'n'))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -343,18 +255,15 @@
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"[('replace', 2, 2)]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 11,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[('delete', 6, 6)]\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"editops('Foo', 'Fon')"
|
|
|
|
|
"print(editops('Delete something', 'Deletesomething'))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -366,66 +275,76 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[('insert', 4, 4)]\n",
|
|
|
|
|
"[('insert', 4, 4)]\n"
|
|
|
|
|
"[('delete', 1, 1), ('replace', 13, 12), ('insert', 16, 15), ('delete', 23, 23)]\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"print(editops('Käptn', 'Käpt\\'n'))\n",
|
|
|
|
|
"print(Levenshtein.editops('Käptn', 'Käpt\\'n'))"
|
|
|
|
|
"print(editops('A more difficult example', 'Amore difficült exampl'))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 13,
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[('delete', 6, 6)]\n",
|
|
|
|
|
"[('delete', 6, 6)]\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"print(editops('Delete something', 'Deletesomething'))\n",
|
|
|
|
|
"print(Levenshtein.editops('Delete something', 'Deletesomething'))"
|
|
|
|
|
"Let's try it with a difficult example that needs grapheme cluster handling:"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"execution_count": 13,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[('delete', 1, 1), ('replace', 13, 12), ('insert', 17, 16), ('delete', 23, 23)]\n",
|
|
|
|
|
"[('delete', 1, 1), ('replace', 13, 12), ('insert', 16, 15), ('delete', 23, 23)]\n"
|
|
|
|
|
]
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"[('insert', 5, 5), ('replace', 5, 6)]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 13,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"print(editops('A more difficult example', 'Amore difficült exampl'))\n",
|
|
|
|
|
"print(Levenshtein.editops('A more difficult example', 'Amore difficült exampl'))"
|
|
|
|
|
"word1 = 'Schlyñ' # with LATIN SMALL LETTER N WITH TILDE\n",
|
|
|
|
|
"word2 = 'Schlym̃' # with LATIN SMALL LETTER M + COMBINING TILDE\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"editops(word1, word2)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"XXX Note that our implementation returns different positions here for the 'insert'. "
|
|
|
|
|
"That doesn't look right, let's redefine it with grapheme cluster support:"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 14,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def editops(word1, word2):\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" Return sequence of edit operations transforming one string to another.\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" Note that this returns indices to the _grapheme clusters_, not characters!\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" word1 = list(grapheme_clusters(unicodedata.normalize(\"NFC\", word1)))\n",
|
|
|
|
|
" word2 = list(grapheme_clusters(unicodedata.normalize(\"NFC\", word2)))\n",
|
|
|
|
|
" return levenshtein_editops(word1, word2)\n",
|
|
|
|
|
"\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"Let's try it with a difficult example that needs grapheme cluster handling:"
|
|
|
|
|
"from qurator.dinglehopper.edit_distance import editops\n",
|
|
|
|
|
"print(inspect.getsource(editops))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -455,7 +374,9 @@
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"🎉"
|
|
|
|
|
"🎉\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"Here, a problem is that the positions are grapheme cluster positions, not Python character indexes!"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -489,22 +410,20 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def character_error_rate(reference, compared):\n",
|
|
|
|
|
" d = distance(reference, compared)\n",
|
|
|
|
|
" if d == 0:\n",
|
|
|
|
|
" return 0\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" n = len(list(grapheme_clusters(unicodedata.normalize('NFC', reference))))\n",
|
|
|
|
|
" if n == 0:\n",
|
|
|
|
|
" return float('inf')\n",
|
|
|
|
|
"def character_error_rate(reference, compared) -> float:\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" Compute character error rate.\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" return d/n\n",
|
|
|
|
|
" :return: character error rate\n",
|
|
|
|
|
" \"\"\"\n",
|
|
|
|
|
" cer, _ = character_error_rate_n(reference, compared)\n",
|
|
|
|
|
" return cer\n",
|
|
|
|
|
"\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from character_error_rate import character_error_rate\n",
|
|
|
|
|
"from qurator.dinglehopper.character_error_rate import character_error_rate\n",
|
|
|
|
|
"print(inspect.getsource(character_error_rate))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -732,16 +651,20 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def words(s):\n",
|
|
|
|
|
"@multimethod\n",
|
|
|
|
|
"def words(s: str):\n",
|
|
|
|
|
" \"\"\"Extract words from a string\"\"\"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # Patch uniseg.wordbreak.word_break to deal with our private use characters. See also\n",
|
|
|
|
|
" # https://www.unicode.org/Public/UCD/latest/ucd/auxiliary/WordBreakProperty.txt\n",
|
|
|
|
|
" old_word_break = uniseg.wordbreak.word_break\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" def new_word_break(c, index=0):\n",
|
|
|
|
|
" if 0xE000 <= ord(c) <= 0xF8FF: # Private Use Area\n",
|
|
|
|
|
" return 'ALetter'\n",
|
|
|
|
|
" return \"ALetter\"\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" return old_word_break(c, index)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" uniseg.wordbreak.word_break = new_word_break\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # Check if c is an unwanted character, i.e. whitespace, punctuation, or similar\n",
|
|
|
|
@ -749,8 +672,8 @@
|
|
|
|
|
"\n",
|
|
|
|
|
" # See https://www.fileformat.info/info/unicode/category/index.htm\n",
|
|
|
|
|
" # and https://unicodebook.readthedocs.io/unicode.html#categories\n",
|
|
|
|
|
" unwanted_categories = 'O', 'M', 'P', 'Z', 'S'\n",
|
|
|
|
|
" unwanted_subcategories = 'Cc', 'Cf'\n",
|
|
|
|
|
" unwanted_categories = \"O\", \"M\", \"P\", \"Z\", \"S\"\n",
|
|
|
|
|
" unwanted_subcategories = \"Cc\", \"Cf\"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" subcat = unicodedata.category(c)\n",
|
|
|
|
|
" cat = subcat[0]\n",
|
|
|
|
@ -778,7 +701,7 @@
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from word_error_rate import words\n",
|
|
|
|
|
"from qurator.dinglehopper.word_error_rate import words\n",
|
|
|
|
|
"print(inspect.getsource(words))\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"list(words(example_text))"
|
|
|
|
@ -905,29 +828,15 @@
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"def word_error_rate(reference, compared):\n",
|
|
|
|
|
" if isinstance(reference, str):\n",
|
|
|
|
|
" reference_seq = list(words_normalized(reference))\n",
|
|
|
|
|
" compared_seq = list(words_normalized(compared))\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" reference_seq = list(reference)\n",
|
|
|
|
|
" compared_seq = list(compared)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" d = levenshtein(reference_seq, compared_seq)\n",
|
|
|
|
|
" if d == 0:\n",
|
|
|
|
|
" return 0\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" n = len(reference_seq)\n",
|
|
|
|
|
" if n == 0:\n",
|
|
|
|
|
" return float('inf')\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" return d / n\n",
|
|
|
|
|
"def word_error_rate(reference, compared) -> float:\n",
|
|
|
|
|
" wer, _ = word_error_rate_n(reference, compared)\n",
|
|
|
|
|
" return wer\n",
|
|
|
|
|
"\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from word_error_rate import word_error_rate\n",
|
|
|
|
|
"from qurator.dinglehopper.word_error_rate import word_error_rate\n",
|
|
|
|
|
"print(inspect.getsource(word_error_rate))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -1002,9 +911,9 @@
|
|
|
|
|
"metadata": {
|
|
|
|
|
"hide_input": false,
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "Python 3",
|
|
|
|
|
"display_name": "dinglehopper-github",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
"name": "dinglehopper-github"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
@ -1016,7 +925,7 @@
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.7.3"
|
|
|
|
|
"version": "3.7.12"
|
|
|
|
|
},
|
|
|
|
|
"toc": {
|
|
|
|
|
"base_numbering": 1,
|
|
|
|
|