mirror of
https://github.com/qurator-spk/dinglehopper.git
synced 2025-07-03 15:39:57 +02:00
Merge b7d1cb455a
into f6dfb77f94
This commit is contained in:
commit
30d9917115
14 changed files with 32 additions and 39 deletions
2
.github/workflows/test.yml
vendored
2
.github/workflows/test.yml
vendored
|
@ -25,7 +25,7 @@ jobs:
|
|||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [ "3.9", "3.10", "3.11", "3.12", "3.13" ]
|
||||
python-version: [ "3.8", "3.9", "3.10", "3.11", "3.12", "3.13" ]
|
||||
|
||||
runs-on: "ubuntu-latest"
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ authors = [
|
|||
description = "An OCR evaluation tool"
|
||||
readme = "README.md"
|
||||
license.file = "LICENSE"
|
||||
requires-python = ">=3.9"
|
||||
requires-python = ">=3.8"
|
||||
keywords = ["qurator", "ocr", "evaluation", "ocr-d"]
|
||||
|
||||
dynamic = ["version", "dependencies", "optional-dependencies"]
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
click
|
||||
jinja2
|
||||
lxml
|
||||
uniseg >= 0.9.1
|
||||
uniseg >= 0.8.0
|
||||
numpy
|
||||
colorama
|
||||
MarkupSafe
|
||||
|
|
|
@ -20,14 +20,7 @@ def character_error_rate_n(
|
|||
:return: character error rate and length of the reference
|
||||
"""
|
||||
|
||||
d = distance(reference, compared)
|
||||
n = len(reference)
|
||||
|
||||
if d == 0:
|
||||
return 0, n
|
||||
if n == 0:
|
||||
return float("inf"), n
|
||||
return d / n, n
|
||||
return distance(reference, compared), len(reference)
|
||||
|
||||
# XXX Should we really count newlines here?
|
||||
|
||||
|
|
|
@ -9,18 +9,18 @@ from .extracted_text import ExtractedText
|
|||
|
||||
|
||||
@multimethod
|
||||
def distance(seq1: List[str], seq2: List[str]) -> int:
|
||||
def distance(seq1: List[str], seq2: List[str]) -> float:
|
||||
"""Compute the Levenshtein edit distance between two lists of grapheme clusters.
|
||||
|
||||
This assumes that the grapheme clusters are already normalized.
|
||||
|
||||
Use distance(str, str) instead if you need to compare two Unicode strings.
|
||||
"""
|
||||
return Levenshtein.distance(seq1, seq2)
|
||||
return Levenshtein.normalized_distance(seq1, seq2)
|
||||
|
||||
|
||||
@distance.register
|
||||
def _(s1: str, s2: str) -> int:
|
||||
def _(s1: str, s2: str) -> float:
|
||||
"""Compute the Levenshtein edit distance between two Unicode strings
|
||||
|
||||
Note that this is different from levenshtein() as this function knows about Unicode
|
||||
|
@ -29,12 +29,12 @@ def _(s1: str, s2: str) -> int:
|
|||
"""
|
||||
seq1 = list(grapheme_clusters(unicodedata.normalize("NFC", s1)))
|
||||
seq2 = list(grapheme_clusters(unicodedata.normalize("NFC", s2)))
|
||||
return Levenshtein.distance(seq1, seq2)
|
||||
return Levenshtein.normalized_distance(seq1, seq2)
|
||||
|
||||
|
||||
@distance.register
|
||||
def _(s1: ExtractedText, s2: ExtractedText) -> int:
|
||||
return Levenshtein.distance(s1.grapheme_clusters, s2.grapheme_clusters)
|
||||
def _(s1: ExtractedText, s2: ExtractedText) -> float:
|
||||
return Levenshtein.normalized_distance(s1.grapheme_clusters, s2.grapheme_clusters)
|
||||
|
||||
|
||||
def editops(word1, word2):
|
||||
|
|
|
@ -14,9 +14,9 @@ def test_character_error_rate():
|
|||
assert character_error_rate("Foo", "") == 3 / 3
|
||||
|
||||
assert character_error_rate("", "") == 0
|
||||
assert math.isinf(character_error_rate("", "Foo"))
|
||||
assert character_error_rate("", "Foo") == 3 / 3
|
||||
|
||||
assert character_error_rate("Foo", "Food") == 1 / 3
|
||||
assert character_error_rate("Foo", "Food") == 1 / 4
|
||||
assert character_error_rate("Fnord", "Food") == 2 / 5
|
||||
assert character_error_rate("Müll", "Mull") == 1 / 4
|
||||
assert character_error_rate("Abstand", "Sand") == 4 / 7
|
||||
|
|
|
@ -6,8 +6,8 @@ from .. import distance
|
|||
|
||||
|
||||
def test_distance():
|
||||
assert distance("Fnord", "Food") == 2
|
||||
assert distance("Müll", "Mull") == 1
|
||||
assert distance("Fnord", "Food") == 2 / 5
|
||||
assert distance("Müll", "Mull") == 1 / 4
|
||||
|
||||
word1 = unicodedata.normalize("NFC", "Schlyñ")
|
||||
word2 = unicodedata.normalize("NFD", "Schlyñ") # Different, decomposed!
|
||||
|
@ -21,4 +21,4 @@ def test_distance():
|
|||
assert (
|
||||
len(word2) == 7
|
||||
) # This, OTOH, ends with LATIN SMALL LETTER M + COMBINING TILDE, 7 code points
|
||||
assert distance(word1, word2) == 1
|
||||
assert distance(word1, word2) == 1 / 6
|
||||
|
|
|
@ -56,4 +56,4 @@ def test_character_error_rate_between_page_alto_2():
|
|||
)
|
||||
)
|
||||
|
||||
assert character_error_rate(gt, ocr) == 8 / 591 # Manually verified
|
||||
assert character_error_rate(gt, ocr) == 8 / 594 # Manually verified
|
||||
|
|
|
@ -32,11 +32,11 @@ def test_cli_json_cer_is_infinity(tmp_path):
|
|||
|
||||
with working_directory(tmp_path):
|
||||
with open("gt.txt", "w") as gtf:
|
||||
gtf.write("") # Empty to yield CER == inf
|
||||
gtf.write("")
|
||||
with open("ocr.txt", "w") as ocrf:
|
||||
ocrf.write("Not important")
|
||||
|
||||
process("gt.txt", "ocr.txt", "report")
|
||||
with open("report.json", "r") as jsonf:
|
||||
j = json.load(jsonf)
|
||||
assert j["cer"] == pytest.approx(float("inf"))
|
||||
assert j["cer"] == pytest.approx(1.0)
|
||||
|
|
|
@ -17,7 +17,7 @@ def test_distance_between_page_files():
|
|||
# → 2 differences
|
||||
gt = page_text(ET.parse(os.path.join(data_dir, "test-gt.page2018.xml")))
|
||||
ocr = page_text(ET.parse(os.path.join(data_dir, "test-fake-ocr.page2018.xml")))
|
||||
assert distance(gt, ocr) == 2
|
||||
assert distance(gt, ocr) == 2 / 827
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
|
@ -52,4 +52,4 @@ def test_distance_between_page_alto_2():
|
|||
)
|
||||
)
|
||||
|
||||
assert distance(gt, ocr) == 8 # Manually verified
|
||||
assert distance(gt, ocr) == 8 / 594 # Manually verified
|
||||
|
|
|
@ -12,9 +12,9 @@ from .util import working_directory
|
|||
@pytest.mark.parametrize(
|
||||
"gt_file_content,ocr_file_content,cer_expected",
|
||||
[
|
||||
("", "Lorem ipsum", math.inf),
|
||||
("", "Lorem ipsum", 1.0),
|
||||
("Lorem ipsum", "", 1.0),
|
||||
("\ufeff", "Lorem ipsum", math.inf),
|
||||
("\ufeff", "Lorem ipsum", 1.0),
|
||||
("Lorem ipsum", "\ufeff", 1.0),
|
||||
("", "", 0.0),
|
||||
("\ufeff", "", 0.0),
|
||||
|
|
|
@ -64,5 +64,5 @@ def test_word_error_rate_between_page_alto_2():
|
|||
)
|
||||
|
||||
assert (
|
||||
word_error_rate(gt, ocr) == 7 / gt_word_count
|
||||
word_error_rate(gt, ocr) == 7 / (gt_word_count + 1)
|
||||
) # Manually verified, 6 words are wrong, 1 got split (=2 errors)
|
||||
|
|
|
@ -76,7 +76,7 @@ def test_word_error_rate():
|
|||
)
|
||||
|
||||
assert word_error_rate("Dies ist ein Beispielsatz!", "") == 4 / 4
|
||||
assert math.isinf(word_error_rate("", "Dies ist ein Beispielsatz!"))
|
||||
assert word_error_rate("", "Dies ist ein Beispielsatz!") == 4 / 4
|
||||
assert word_error_rate("", "") == 0
|
||||
|
||||
assert (
|
||||
|
|
|
@ -21,10 +21,15 @@ def patch_word_break():
|
|||
https://www.unicode.org/Public/UCD/latest/ucd/auxiliary/WordBreakProperty.txt
|
||||
"""
|
||||
old_word_break = uniseg.wordbreak.word_break
|
||||
if hasattr(uniseg.wordbreak, 'Word_Break'):
|
||||
aletter = uniseg.wordbreak.Word_Break.ALetter
|
||||
else:
|
||||
# uniseg<0.9
|
||||
aletter = uniseg.wordbreak.WordBreak.ALETTER
|
||||
|
||||
def new_word_break(c):
|
||||
if 0xE000 <= ord(c) <= 0xF8FF: # Private Use Area
|
||||
return uniseg.wordbreak.Word_Break.ALetter
|
||||
return aletter
|
||||
else:
|
||||
return old_word_break(c)
|
||||
|
||||
|
@ -96,15 +101,10 @@ def _(reference: Iterable[T], compared: Iterable[T]) -> Tuple[float, int]:
|
|||
reference_seq = list(reference)
|
||||
compared_seq = list(compared)
|
||||
|
||||
d = Levenshtein.distance(reference_seq, compared_seq)
|
||||
d = Levenshtein.normalized_distance(reference_seq, compared_seq)
|
||||
n = len(reference_seq)
|
||||
|
||||
if d == 0:
|
||||
return 0, n
|
||||
if n == 0:
|
||||
return float("inf"), n
|
||||
return d / n, n
|
||||
|
||||
return d, n
|
||||
|
||||
def word_error_rate(reference: T, compared: T) -> float:
|
||||
wer: float
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue