1
0
Fork 0
mirror of https://github.com/qurator-spk/dinglehopper.git synced 2025-06-17 23:59:59 +02:00
This reverts commit 2c89bf3b35ee290d7b830ef270df3a96aa48245e, reversing
changes made to 9f7e413148ca5dbac9b555d7b0d0a5fa3a0f5340.
This commit is contained in:
Gerber, Mike 2019-12-09 12:44:05 +01:00
parent 1303a7d92f
commit 48a31ce672
73 changed files with 64834 additions and 1686 deletions

View file

@ -1,30 +1,49 @@
# Textline Detection
dinglehopper
============
## Introduction
This tool performs textline detection from document image data and returns the results as PAGE-XML.
dinglehopper is an OCR evaluation tool and reads [ALTO](https://github.com/altoxml), [PAGE](https://github.com/PRImA-Research-Lab/PAGE-XML) and text files.
## Installation
[![Build Status](https://travis-ci.org/qurator-spk/dinglehopper.svg?branch=master)](https://travis-ci.org/qurator-spk/dinglehopper)
`pip install .`
## Models
In order to run this tool you also need trained models. You can download our pre-trained models from here:
https://file.spk-berlin.de:8443/textline_detection/
## Usage
`sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>`
## Usage with OCR-D
Goals
-----
* Useful
* As a UI tool
* For an automated evaluation
* As a library
* Unicode support
Installation
------------
It's best to use pip, e.g.:
~~~
ocrd-example-binarize -I OCR-D-IMG -O OCR-D-IMG-BIN
ocrd-sbb-textline-detector -I OCR-D-IMG-BIN -O OCR-D-SEG-LINE-SBB \
-p '{ "model": "/path/to/the/models/textline_detection" }'
sudo pip install .
~~~
Segmentation works on raw RGB images, but respects and retains
`AlternativeImage`s from binarization steps, so it's a good idea to do
binarization first, then perform the textline detection. The used binarization
processor must produce an `AlternativeImage` for the binarized image, not
replace the original raw RGB image.
Usage
-----
~~~
dinglehopper some-document.gt.page.xml some-document.ocr.alto.xml
~~~
This generates `report.html` and `report.json`.
As a OCR-D processor:
~~~
ocrd-dinglehopper -m mets.xml -I OCR-D-GT-PAGE,OCR-D-OCR-TESS -O OCR-D-OCR-TESS-EVAL
~~~
This generates HTML and JSON reports in the `OCR-D-OCR-TESS-EVAL` filegroup.
![dinglehopper displaying metrics and character differences](.screenshots/dinglehopper.png?raw=true)
Testing
-------
Use `pytest` to run the tests in [the tests directory](qurator/dinglehopper/tests):
~~~
virtualenv -p /usr/bin/python3 venv
. venv/bin/activate
pip install -r requirements.txt
pip install pytest
pytest
~~~