mirror of
https://github.com/qurator-spk/dinglehopper.git
synced 2025-07-03 07:29:59 +02:00
Revert "Merge branch 'master' of https://github.com/qurator-spk/sbb_textline_detector"
This reverts commit 2c89bf3b35ee290d7b830ef270df3a96aa48245e, reversing changes made to 9f7e413148ca5dbac9b555d7b0d0a5fa3a0f5340.
This commit is contained in:
parent
1303a7d92f
commit
48a31ce672
73 changed files with 64834 additions and 1686 deletions
122
qurator/dinglehopper/edit_distance.py
Normal file
122
qurator/dinglehopper/edit_distance.py
Normal file
|
@ -0,0 +1,122 @@
|
|||
from __future__ import division, print_function
|
||||
|
||||
import unicodedata
|
||||
from functools import partial, lru_cache
|
||||
from typing import Sequence, Tuple
|
||||
|
||||
import numpy as np
|
||||
from uniseg.graphemecluster import grapheme_clusters
|
||||
|
||||
|
||||
def levenshtein_matrix(seq1: Sequence, seq2: Sequence):
|
||||
"""Compute the matrix commonly computed to produce the Levenshtein distance.
|
||||
This is also known as the Wagner-Fischer algorithm. The matrix element at the bottom right contains the desired
|
||||
edit distance.
|
||||
|
||||
This algorithm is implemented here because we need an implementation that can work with sequences other than
|
||||
strings, e.g. lists of grapheme clusters or lists of word strings.
|
||||
"""
|
||||
|
||||
# Internally, we use a cached version. As the cache only works on hashable parameters, we convert the input
|
||||
# sequences to tuples to make them hashable.
|
||||
return _levenshtein_matrix(tuple(seq1), tuple(seq2))
|
||||
|
||||
|
||||
@lru_cache(maxsize=10)
|
||||
def _levenshtein_matrix(seq1: Tuple, seq2: Tuple):
|
||||
"""Compute the matrix commonly computed to produce the Levenshtein distance.
|
||||
|
||||
This is a LRU cached function not meant to be used directly. Use levenshtein_matrix() instead.
|
||||
"""
|
||||
m = len(seq1)
|
||||
n = len(seq2)
|
||||
|
||||
def from_to(start, stop):
|
||||
return range(start, stop + 1, 1)
|
||||
|
||||
D = np.zeros((m + 1, n + 1), np.int)
|
||||
D[0, 0] = 0
|
||||
for i in from_to(1, m):
|
||||
D[i, 0] = i
|
||||
for j in from_to(1, n):
|
||||
D[0, j] = j
|
||||
for i in from_to(1, m):
|
||||
for j in from_to(1, n):
|
||||
D[i, j] = min(
|
||||
D[i - 1, j - 1] + 1 * (seq1[i - 1] != seq2[j - 1]), # Same or Substitution
|
||||
D[i, j - 1] + 1, # Insertion
|
||||
D[i - 1, j] + 1 # Deletion
|
||||
)
|
||||
|
||||
return D
|
||||
|
||||
|
||||
def levenshtein(seq1, seq2):
|
||||
"""Compute the Levenshtein edit distance between two sequences"""
|
||||
m = len(seq1)
|
||||
n = len(seq2)
|
||||
|
||||
D = levenshtein_matrix(seq1, seq2)
|
||||
return D[m, n]
|
||||
|
||||
|
||||
def levenshtein_matrix_cache_clear():
|
||||
"""Clear internal Levenshtein matrix cache.
|
||||
|
||||
You want to do this between different input file pairs to decrease memory
|
||||
usage by not caching results from prior input files.
|
||||
"""
|
||||
_levenshtein_matrix.cache_clear()
|
||||
|
||||
|
||||
def distance(s1, s2):
|
||||
"""Compute the Levenshtein edit distance between two Unicode strings
|
||||
|
||||
Note that this is different from levenshtein() as this function knows about Unicode normalization and grapheme
|
||||
clusters. This should be the correct way to compare two Unicode strings.
|
||||
"""
|
||||
s1 = list(grapheme_clusters(unicodedata.normalize('NFC', s1)))
|
||||
s2 = list(grapheme_clusters(unicodedata.normalize('NFC', s2)))
|
||||
return levenshtein(s1, s2)
|
||||
|
||||
|
||||
def seq_editops(seq1, seq2):
|
||||
"""
|
||||
Return sequence of edit operations transforming one sequence to another.
|
||||
|
||||
This aims to return the same/similar results as python-Levenshtein's editops(), just generalized to arbitrary
|
||||
sequences.
|
||||
"""
|
||||
seq1 = list(seq1)
|
||||
seq2 = list(seq2)
|
||||
m = len(seq1)
|
||||
n = len(seq2)
|
||||
D = levenshtein_matrix(seq1, seq2)
|
||||
|
||||
def _tail_backtrace(i, j, accumulator):
|
||||
if i > 0 and D[i - 1, j] + 1 == D[i, j]:
|
||||
return partial(_tail_backtrace, i - 1, j, [('delete', i-1, j)] + accumulator)
|
||||
if j > 0 and D[i, j - 1] + 1 == D[i, j]:
|
||||
return partial(_tail_backtrace, i, j - 1, [('insert', i, j-1)] + accumulator)
|
||||
if i > 0 and j > 0 and D[i - 1, j - 1] + 1 == D[i, j]:
|
||||
return partial(_tail_backtrace, i - 1, j - 1, [('replace', i-1, j-1)] + accumulator)
|
||||
if i > 0 and j > 0 and D[i - 1, j - 1] == D[i, j]:
|
||||
return partial(_tail_backtrace, i - 1, j - 1, accumulator) # NOP
|
||||
return accumulator
|
||||
|
||||
def backtrace(i, j):
|
||||
result = partial(_tail_backtrace, i, j, [])
|
||||
while isinstance(result, partial):
|
||||
result = result()
|
||||
|
||||
return result
|
||||
|
||||
b = backtrace(m, n)
|
||||
return b
|
||||
|
||||
|
||||
def editops(word1, word2):
|
||||
# XXX Note that this returns indices to the _grapheme clusters_, not characters!
|
||||
word1 = list(grapheme_clusters(unicodedata.normalize('NFC', word1)))
|
||||
word2 = list(grapheme_clusters(unicodedata.normalize('NFC', word2)))
|
||||
return seq_editops(word1, word2)
|
Loading…
Add table
Add a link
Reference in a new issue