mirror of
https://github.com/qurator-spk/dinglehopper.git
synced 2025-06-07 19:05:13 +02:00
Include fca as parameter and add some tests
This commit is contained in:
parent
9b76539936
commit
53064bf833
11 changed files with 219 additions and 65 deletions
20
README.md
20
README.md
|
@ -35,19 +35,23 @@ Usage: dinglehopper [OPTIONS] GT OCR [REPORT_PREFIX]
|
|||
their text and falls back to plain text if no ALTO or PAGE is detected.
|
||||
|
||||
The files GT and OCR are usually a ground truth document and the result of
|
||||
an OCR software, but you may use dinglehopper to compare two OCR results.
|
||||
In that case, use --no-metrics to disable the then meaningless metrics and
|
||||
also change the color scheme from green/red to blue.
|
||||
an OCR software, but you may use dinglehopper to compare two OCR results. In
|
||||
that case, use --metrics='' to disable the then meaningless metrics and also
|
||||
change the color scheme from green/red to blue.
|
||||
|
||||
The comparison report will be written to $REPORT_PREFIX.{html,json}, where
|
||||
$REPORT_PREFIX defaults to "report". The reports include the character
|
||||
error rate (CER) and the word error rate (WER).
|
||||
$REPORT_PREFIX defaults to "report". Depending on your configuration the
|
||||
reports include the character error rate (CER), the word error rate (WER)
|
||||
and the flexible character accuracy (FCA).
|
||||
|
||||
The metrics can be chosen via a comma separated combination of their acronyms
|
||||
like "--metrics=cer,wer,fca".
|
||||
|
||||
By default, the text of PAGE files is extracted on 'region' level. You may
|
||||
use "--textequiv-level line" to extract from the level of TextLine tags.
|
||||
|
||||
Options:
|
||||
--metrics / --no-metrics Enable/disable metrics and green/red
|
||||
--metrics Enable different metrics like cer, wer and fca.
|
||||
--textequiv-level LEVEL PAGE TextEquiv level to extract text from
|
||||
--progress Show progress bar
|
||||
--help Show this message and exit.
|
||||
|
@ -80,12 +84,12 @@ The OCR-D processor has these parameters:
|
|||
|
||||
| Parameter | Meaning |
|
||||
| ------------------------- | ------------------------------------------------------------------- |
|
||||
| `-P metrics false` | Disable metrics and the green-red color scheme (default: enabled) |
|
||||
| `-P metrics cer,wer` | Enable character error rate and word error rate (default) |
|
||||
| `-P textequiv_level line` | (PAGE) Extract text from TextLine level (default: TextRegion level) |
|
||||
|
||||
For example:
|
||||
~~~
|
||||
ocrd-dinglehopper -I ABBYY-FULLTEXT,OCR-D-OCR-CALAMARI -O OCR-D-OCR-COMPARE-ABBYY-CALAMARI -P metrics false
|
||||
ocrd-dinglehopper -I ABBYY-FULLTEXT,OCR-D-OCR-CALAMARI -O OCR-D-OCR-COMPARE-ABBYY-CALAMARI -P metrics cer,wer
|
||||
~~~
|
||||
|
||||
Developer information
|
||||
|
|
|
@ -3,3 +3,4 @@ from .extracted_text import *
|
|||
from .character_error_rate import *
|
||||
from .word_error_rate import *
|
||||
from .align import *
|
||||
from .flexible_character_accuracy import flexible_character_accuracy, split_matches
|
||||
|
|
|
@ -8,10 +8,11 @@ def align(t1, t2):
|
|||
return seq_align(s1, s2)
|
||||
|
||||
|
||||
def seq_align(s1, s2):
|
||||
def seq_align(s1, s2, ops=None):
|
||||
"""Align general sequences."""
|
||||
s1 = list(s1)
|
||||
s2 = list(s2)
|
||||
if not ops:
|
||||
ops = seq_editops(s1, s2)
|
||||
i = 0
|
||||
j = 0
|
||||
|
|
|
@ -6,6 +6,7 @@ from markupsafe import escape
|
|||
from uniseg.graphemecluster import grapheme_clusters
|
||||
|
||||
from .character_error_rate import character_error_rate_n
|
||||
from .flexible_character_accuracy import flexible_character_accuracy, split_matches
|
||||
from .word_error_rate import word_error_rate_n, words_normalized
|
||||
from .align import seq_align
|
||||
from .extracted_text import ExtractedText
|
||||
|
@ -13,7 +14,7 @@ from .ocr_files import extract
|
|||
from .config import Config
|
||||
|
||||
|
||||
def gen_diff_report(gt_in, ocr_in, css_prefix, joiner, none):
|
||||
def gen_diff_report(gt_in, ocr_in, css_prefix, joiner, none, ops=None):
|
||||
gtx = ""
|
||||
ocrx = ""
|
||||
|
||||
|
@ -53,7 +54,7 @@ def gen_diff_report(gt_in, ocr_in, css_prefix, joiner, none):
|
|||
|
||||
g_pos = 0
|
||||
o_pos = 0
|
||||
for k, (g, o) in enumerate(seq_align(gt_things, ocr_things)):
|
||||
for k, (g, o) in enumerate(seq_align(gt_things, ocr_things, ops=ops)):
|
||||
css_classes = None
|
||||
gt_id = None
|
||||
ocr_id = None
|
||||
|
@ -83,28 +84,43 @@ def gen_diff_report(gt_in, ocr_in, css_prefix, joiner, none):
|
|||
)
|
||||
|
||||
|
||||
def process(gt, ocr, report_prefix, *, metrics=True, textequiv_level="region"):
|
||||
def process(gt, ocr, report_prefix, *, metrics="cer,wer", textequiv_level="region"):
|
||||
"""Check OCR result against GT.
|
||||
|
||||
The @click decorators change the signature of the decorated functions, so we keep this undecorated version and use
|
||||
Click on a wrapper.
|
||||
The @click decorators change the signature of the decorated functions,
|
||||
so we keep this undecorated version and use Click on a wrapper.
|
||||
"""
|
||||
cer, char_diff_report, n_characters = None, None, None
|
||||
wer, word_diff_report, n_words = None, None, None
|
||||
fca, fca_diff_report = None, None
|
||||
|
||||
gt_text = extract(gt, textequiv_level=textequiv_level)
|
||||
ocr_text = extract(ocr, textequiv_level=textequiv_level)
|
||||
|
||||
if "cer" in metrics or not metrics:
|
||||
cer, n_characters = character_error_rate_n(gt_text, ocr_text)
|
||||
wer, n_words = word_error_rate_n(gt_text, ocr_text)
|
||||
|
||||
char_diff_report = gen_diff_report(
|
||||
gt_text, ocr_text, css_prefix="c", joiner="", none="·"
|
||||
)
|
||||
|
||||
if "wer" in metrics:
|
||||
gt_words = words_normalized(gt_text)
|
||||
ocr_words = words_normalized(ocr_text)
|
||||
wer, n_words = word_error_rate_n(gt_text, ocr_text)
|
||||
word_diff_report = gen_diff_report(
|
||||
gt_words, ocr_words, css_prefix="w", joiner=" ", none="⋯"
|
||||
)
|
||||
if "fca" in metrics:
|
||||
fca, fca_matches = flexible_character_accuracy(gt_text.text, ocr_text.text)
|
||||
fca_gt_segments, fca_ocr_segments, ops = split_matches(fca_matches)
|
||||
fca_diff_report = gen_diff_report(
|
||||
fca_gt_segments,
|
||||
fca_ocr_segments,
|
||||
css_prefix="c",
|
||||
joiner="",
|
||||
none="·",
|
||||
ops=ops,
|
||||
)
|
||||
|
||||
def json_float(value):
|
||||
"""Convert a float value to an JSON float.
|
||||
|
@ -137,8 +153,10 @@ def process(gt, ocr, report_prefix, *, metrics=True, textequiv_level="region"):
|
|||
n_characters=n_characters,
|
||||
wer=wer,
|
||||
n_words=n_words,
|
||||
fca=fca,
|
||||
char_diff_report=char_diff_report,
|
||||
word_diff_report=word_diff_report,
|
||||
fca_diff_report=fca_diff_report,
|
||||
metrics=metrics,
|
||||
).dump(out_fn)
|
||||
|
||||
|
@ -148,7 +166,9 @@ def process(gt, ocr, report_prefix, *, metrics=True, textequiv_level="region"):
|
|||
@click.argument("ocr", type=click.Path(exists=True))
|
||||
@click.argument("report_prefix", type=click.Path(), default="report")
|
||||
@click.option(
|
||||
"--metrics/--no-metrics", default=True, help="Enable/disable metrics and green/red"
|
||||
"--metrics",
|
||||
default="cer,wer",
|
||||
help="Enable different metrics like cer, wer and fca.",
|
||||
)
|
||||
@click.option(
|
||||
"--textequiv-level",
|
||||
|
@ -166,12 +186,16 @@ def main(gt, ocr, report_prefix, metrics, textequiv_level, progress):
|
|||
|
||||
The files GT and OCR are usually a ground truth document and the result of
|
||||
an OCR software, but you may use dinglehopper to compare two OCR results. In
|
||||
that case, use --no-metrics to disable the then meaningless metrics and also
|
||||
that case, use --metrics='' to disable the then meaningless metrics and also
|
||||
change the color scheme from green/red to blue.
|
||||
|
||||
The comparison report will be written to $REPORT_PREFIX.{html,json}, where
|
||||
$REPORT_PREFIX defaults to "report". The reports include the character error
|
||||
rate (CER) and the word error rate (WER).
|
||||
$REPORT_PREFIX defaults to "report". Depending on your configuration the
|
||||
reports include the character error rate (CER), the word error rate (WER)
|
||||
and the flexible character accuracy (FCA).
|
||||
|
||||
The metrics can be chosen via a comma separated combination of their acronyms
|
||||
like "--metrics=cer,wer,fca".
|
||||
|
||||
By default, the text of PAGE files is extracted on 'region' level. You may
|
||||
use "--textequiv-level line" to extract from the level of TextLine tags.
|
||||
|
|
|
@ -270,7 +270,9 @@ def score_edit_distance(match: Match) -> int:
|
|||
return match.dist.delete + match.dist.insert + 2 * match.dist.replace
|
||||
|
||||
|
||||
def calculate_penalty(gt: "Part", ocr: "Part", match: Match, coef: Coefficients) -> float:
|
||||
def calculate_penalty(
|
||||
gt: "Part", ocr: "Part", match: Match, coef: Coefficients
|
||||
) -> float:
|
||||
"""Calculate the penalty for a given match.
|
||||
|
||||
For details and discussion see Section 3 in doi:10.1016/j.patrec.2020.02.003.
|
||||
|
@ -325,6 +327,8 @@ def character_accuracy(edits: Distance) -> float:
|
|||
if not chars and not errors:
|
||||
# comparison of empty strings is considered a full match
|
||||
score = 1.0
|
||||
elif not chars:
|
||||
score = -errors
|
||||
else:
|
||||
score = 1.0 - errors / chars
|
||||
return score
|
||||
|
@ -349,25 +353,25 @@ def initialize_lines(text: str) -> List["Part"]:
|
|||
return lines
|
||||
|
||||
|
||||
def combine_lines(matches: List[Match]) -> Tuple[str, str]:
|
||||
"""Combines the matches to aligned texts.
|
||||
|
||||
TODO: just hacked, needs tests and refinement. Also missing insert/delete marking.
|
||||
def split_matches(matches: List[Match]) -> Tuple[List[str], List[str], List[List]]:
|
||||
"""Extracts text segments and editing operations in separate lists.
|
||||
|
||||
:param matches: List of match objects.
|
||||
:return: the aligned ground truth and ocr as texts.
|
||||
:return: List of ground truth segments, ocr segments and editing operations.
|
||||
"""
|
||||
matches.sort(key=lambda x: x.gt.line + x.gt.start / 10000)
|
||||
matches = sorted(matches, key=lambda x: x.gt.line + x.gt.start / 10000)
|
||||
line = 0
|
||||
gt, ocr = "", ""
|
||||
gt, ocr, ops = [], [], []
|
||||
for match in matches:
|
||||
if match.gt.line > line:
|
||||
gt += "\n"
|
||||
ocr += "\n"
|
||||
line += 1
|
||||
gt += match.gt.text
|
||||
ocr += match.ocr.text
|
||||
return gt, ocr
|
||||
gt.append("\n")
|
||||
ocr.append("\n")
|
||||
ops.append([])
|
||||
line = match.gt.line
|
||||
gt.append(match.gt.text)
|
||||
ocr.append(match.ocr.text)
|
||||
ops.append(match.ops)
|
||||
return gt, ocr, ops
|
||||
|
||||
|
||||
class Part(PartVersionSpecific):
|
||||
|
|
|
@ -19,9 +19,10 @@
|
|||
],
|
||||
"parameters": {
|
||||
"metrics": {
|
||||
"type": "boolean",
|
||||
"default": true,
|
||||
"description": "Enable/disable metrics and green/red"
|
||||
"type": "string",
|
||||
"enum": ["", "cer", "wer", "fca", "cer,wer", "cer,fca", "wer,fca", "cer,wer,fca"],
|
||||
"default": "cer,wer",
|
||||
"description": "Enable different metrics like cer, wer and fca."
|
||||
},
|
||||
"textequiv_level": {
|
||||
"type": "string",
|
||||
|
|
|
@ -40,16 +40,31 @@
|
|||
|
||||
{% if metrics %}
|
||||
<h2>Metrics</h2>
|
||||
{% if cer %}
|
||||
<p>CER: {{ cer|round(4) }}</p>
|
||||
{% endif %}
|
||||
{% if wer %}
|
||||
<p>WER: {{ wer|round(4) }}</p>
|
||||
{% endif %}
|
||||
{% if fca %}
|
||||
<p>FCA: {{ fca|round(4) }}</p>
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
|
||||
{% if char_diff_report %}
|
||||
<h2>Character differences</h2>
|
||||
{{ char_diff_report }}
|
||||
{% endif %}
|
||||
|
||||
{% if word_diff_report %}
|
||||
<h2>Word differences</h2>
|
||||
{{ word_diff_report }}
|
||||
{% endif %}
|
||||
|
||||
{% if fca_diff_report %}
|
||||
<h2>Flexible character accuracy differences</h2>
|
||||
{{ fca_diff_report }}
|
||||
{% endif %}
|
||||
|
||||
</div>
|
||||
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
{
|
||||
"gt": "{{ gt }}",
|
||||
"ocr": "{{ ocr }}",
|
||||
{% if metrics %}
|
||||
"cer": {{ cer|json_float }},
|
||||
"wer": {{ wer|json_float }},
|
||||
{% if cer %}"cer": {{ cer|json_float }},{% endif %}
|
||||
{% if wer %}"wer": {{ wer|json_float }},{% endif %}
|
||||
{% if fca %}"fca": {{ fca|json_float }},{% endif %}
|
||||
{% if n_characters %}"n_characters": {{ n_characters }},{% endif %}
|
||||
{% if n_words %}"n_words": {{ n_words }},{% endif %}
|
||||
{% endif %}
|
||||
"n_characters": {{ n_characters }},
|
||||
"n_words": {{ n_words }}
|
||||
"gt": "{{ gt }}",
|
||||
"ocr": "{{ ocr }}"
|
||||
}
|
||||
|
|
|
@ -117,13 +117,13 @@ def test_flexible_character_accuracy_simple(gt, ocr, first_line_score, all_line_
|
|||
),
|
||||
(
|
||||
"Config II",
|
||||
'1 hav\nnospecial\ntalents. Alberto\n'
|
||||
"1 hav\nnospecial\ntalents. Alberto\n"
|
||||
'I am one Emstein\npassionate\ncuriousity."',
|
||||
),
|
||||
(
|
||||
"Config III",
|
||||
'Alberto\nEmstein\n'
|
||||
'1 hav\nnospecial\ntalents.\n'
|
||||
"Alberto\nEmstein\n"
|
||||
"1 hav\nnospecial\ntalents.\n"
|
||||
'I am one\npassionate\ncuriousity."',
|
||||
),
|
||||
],
|
||||
|
@ -323,6 +323,8 @@ def test_character_accuracy_matches(matches, expected_dist):
|
|||
(Distance(), 1),
|
||||
(Distance(match=1), 1),
|
||||
(Distance(replace=1), 0),
|
||||
(Distance(delete=1), 0),
|
||||
(Distance(insert=1), -1),
|
||||
(Distance(match=1, insert=1), 0),
|
||||
(Distance(match=1, insert=2), 1 - 2 / 1),
|
||||
(Distance(match=2, insert=1), 0.5),
|
||||
|
@ -377,9 +379,42 @@ def test_initialize_lines():
|
|||
assert lines == [line3, line1, line2]
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_combine_lines():
|
||||
assert False
|
||||
@pytest.mark.parametrize(
|
||||
"matches,expected_gt,expected_ocr,expected_ops",
|
||||
[
|
||||
([], [], [], []),
|
||||
(
|
||||
[Match(gt=Part(text="aaa"), ocr=Part(text="aaa"), dist=Distance(), ops=[])],
|
||||
["aaa"],
|
||||
["aaa"],
|
||||
[[]],
|
||||
),
|
||||
(
|
||||
[
|
||||
Match(
|
||||
gt=Part(text="aaa", line=1),
|
||||
ocr=Part(text="aaa"),
|
||||
dist=Distance(),
|
||||
ops=[],
|
||||
),
|
||||
Match(
|
||||
gt=Part(text="bbb", line=2),
|
||||
ocr=Part(text="bbc"),
|
||||
dist=Distance(),
|
||||
ops=[["replace", 2]],
|
||||
),
|
||||
],
|
||||
["\n", "aaa", "\n", "bbb"],
|
||||
["\n", "aaa", "\n", "bbc"],
|
||||
[[], [], [], [["replace", 2]]],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_split_matches(matches, expected_gt, expected_ocr, expected_ops):
|
||||
gt_segments, ocr_segments, ops = split_matches(matches)
|
||||
assert gt_segments == expected_gt
|
||||
assert ocr_segments == expected_ocr
|
||||
assert ops == expected_ops
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import json
|
||||
from itertools import combinations
|
||||
|
||||
import pytest
|
||||
from .util import working_directory
|
||||
|
@ -7,9 +8,19 @@ from ..cli import process
|
|||
|
||||
|
||||
@pytest.mark.integration
|
||||
def test_cli_json(tmp_path):
|
||||
@pytest.mark.parametrize(
|
||||
"metrics",
|
||||
[
|
||||
*(("",), ("cer",), ("wer",), ("fca",)),
|
||||
*combinations(("cer", "wer", "fca"), 2),
|
||||
("cer", "wer", "fca"),
|
||||
],
|
||||
)
|
||||
def test_cli_json(metrics, tmp_path):
|
||||
"""Test that the cli/process() yields a loadable JSON report"""
|
||||
|
||||
expected_values = {"cer": 0.2, "wer": 1.0, "fca": 0.8}
|
||||
|
||||
with working_directory(str(tmp_path)):
|
||||
with open("gt.txt", "w") as gtf:
|
||||
gtf.write("AAAAA")
|
||||
|
@ -18,12 +29,18 @@ def test_cli_json(tmp_path):
|
|||
|
||||
with open("gt.txt", "r") as gtf:
|
||||
print(gtf.read())
|
||||
process("gt.txt", "ocr.txt", "report")
|
||||
|
||||
process("gt.txt", "ocr.txt", "report", metrics=",".join(metrics))
|
||||
|
||||
with open("report.json", "r") as jsonf:
|
||||
print(jsonf.read())
|
||||
with open("report.json", "r") as jsonf:
|
||||
j = json.load(jsonf)
|
||||
assert j["cer"] == pytest.approx(0.2)
|
||||
for metric, expected_value in expected_values.items():
|
||||
if metric in metrics:
|
||||
assert j[metric] == pytest.approx(expected_values[metric])
|
||||
else:
|
||||
assert metric not in j.keys()
|
||||
|
||||
|
||||
@pytest.mark.integration
|
||||
|
@ -36,7 +53,8 @@ def test_cli_json_cer_is_infinity(tmp_path):
|
|||
with open("ocr.txt", "w") as ocrf:
|
||||
ocrf.write("Not important")
|
||||
|
||||
process("gt.txt", "ocr.txt", "report")
|
||||
process("gt.txt", "ocr.txt", "report", metrics="cer,wer,fca")
|
||||
with open("report.json", "r") as jsonf:
|
||||
j = json.load(jsonf)
|
||||
assert j["cer"] == pytest.approx(float("inf"))
|
||||
assert j["fca"] == pytest.approx(-13)
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
import os
|
||||
|
||||
import pytest
|
||||
from lxml import etree as ET
|
||||
|
||||
from .. import distance, page_text
|
||||
from .. import flexible_character_accuracy, split_matches
|
||||
|
||||
data_dir = os.path.join(
|
||||
os.path.dirname(os.path.abspath(__file__)), "data", "table-order"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("file", ["table-order-0002.xml", "table-no-reading-order.xml"])
|
||||
@pytest.mark.integration
|
||||
def test_fac_ignoring_reading_order(file):
|
||||
expected = "1\n2\n3\n4\n5\n6\n7\n8\n9"
|
||||
|
||||
gt = page_text(ET.parse(os.path.join(data_dir, "table-order-0001.xml")))
|
||||
assert gt == expected
|
||||
|
||||
ocr = page_text(ET.parse(os.path.join(data_dir, file)))
|
||||
assert distance(gt, ocr) > 0
|
||||
|
||||
fac, matches = flexible_character_accuracy(gt, ocr)
|
||||
assert fac == pytest.approx(1.0)
|
||||
|
||||
gt_segments, ocr_segments, ops = split_matches(matches)
|
||||
assert not any(ops)
|
||||
assert "".join(gt_segments) == expected
|
||||
assert "".join(ocr_segments) == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"file,expected_text",
|
||||
[
|
||||
("table-order-0001.xml", "1\n2\n3\n4\n5\n6\n7\n8\n9"),
|
||||
("table-order-0002.xml", "1\n4\n7\n2\n5\n8\n3\n6\n9"),
|
||||
("table-no-reading-order.xml", "5\n6\n7\n8\n9\n1\n2\n3\n4"),
|
||||
("table-unordered.xml", "5\n6\n7\n8\n9\n1\n2\n3\n4"),
|
||||
],
|
||||
)
|
||||
@pytest.mark.integration
|
||||
def test_reading_order_settings(file, expected_text):
|
||||
if "table-unordered.xml" == file:
|
||||
with pytest.raises(NotImplementedError):
|
||||
page_text(ET.parse(os.path.join(data_dir, file)))
|
||||
else:
|
||||
ocr = page_text(ET.parse(os.path.join(data_dir, file)))
|
||||
assert ocr == expected_text
|
Loading…
Add table
Add a link
Reference in a new issue