|
|
@ -8,79 +8,19 @@ import numpy as np
|
|
|
|
from multimethod import multimethod
|
|
|
|
from multimethod import multimethod
|
|
|
|
from uniseg.graphemecluster import grapheme_clusters
|
|
|
|
from uniseg.graphemecluster import grapheme_clusters
|
|
|
|
from tqdm import tqdm
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
from rapidfuzz.string_metric import levenshtein, levenshtein_editops
|
|
|
|
|
|
|
|
|
|
|
|
from .extracted_text import ExtractedText
|
|
|
|
from .extracted_text import ExtractedText
|
|
|
|
from .config import Config
|
|
|
|
from .config import Config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def levenshtein_matrix(seq1: Sequence, seq2: Sequence):
|
|
|
|
|
|
|
|
"""Compute the matrix commonly computed to produce the Levenshtein distance.
|
|
|
|
|
|
|
|
This is also known as the Wagner-Fischer algorithm. The matrix element at the bottom right contains the desired
|
|
|
|
|
|
|
|
edit distance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This algorithm is implemented here because we need an implementation that can work with sequences other than
|
|
|
|
|
|
|
|
strings, e.g. lists of grapheme clusters or lists of word strings.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Internally, we use a cached version. As the cache only works on hashable parameters, we convert the input
|
|
|
|
|
|
|
|
# sequences to tuples to make them hashable.
|
|
|
|
|
|
|
|
return _levenshtein_matrix(tuple(seq1), tuple(seq2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=10)
|
|
|
|
|
|
|
|
def _levenshtein_matrix(seq1: Tuple, seq2: Tuple):
|
|
|
|
|
|
|
|
"""Compute the matrix commonly computed to produce the Levenshtein distance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This is a LRU cached function not meant to be used directly. Use levenshtein_matrix() instead.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
m = len(seq1)
|
|
|
|
|
|
|
|
n = len(seq2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def from_to(start, stop):
|
|
|
|
|
|
|
|
return range(start, stop + 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D = np.zeros((m + 1, n + 1), np.int)
|
|
|
|
|
|
|
|
D[0, 0] = 0
|
|
|
|
|
|
|
|
for i in from_to(1, m):
|
|
|
|
|
|
|
|
D[i, 0] = i
|
|
|
|
|
|
|
|
for j in from_to(1, n):
|
|
|
|
|
|
|
|
D[0, j] = j
|
|
|
|
|
|
|
|
for i in tqdm(from_to(1, m), disable=not Config.progress):
|
|
|
|
|
|
|
|
for j in from_to(1, n):
|
|
|
|
|
|
|
|
D[i, j] = min(
|
|
|
|
|
|
|
|
D[i - 1, j - 1]
|
|
|
|
|
|
|
|
+ 1 * (seq1[i - 1] != seq2[j - 1]), # Same or Substitution
|
|
|
|
|
|
|
|
D[i, j - 1] + 1, # Insertion
|
|
|
|
|
|
|
|
D[i - 1, j] + 1, # Deletion
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return D
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def levenshtein(seq1, seq2):
|
|
|
|
|
|
|
|
"""Compute the Levenshtein edit distance between two sequences"""
|
|
|
|
|
|
|
|
m = len(seq1)
|
|
|
|
|
|
|
|
n = len(seq2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D = levenshtein_matrix(seq1, seq2)
|
|
|
|
|
|
|
|
return D[m, n]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def levenshtein_matrix_cache_clear():
|
|
|
|
|
|
|
|
"""Clear internal Levenshtein matrix cache.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
You want to do this between different input file pairs to decrease memory
|
|
|
|
|
|
|
|
usage by not caching results from prior input files.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
_levenshtein_matrix.cache_clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@multimethod
|
|
|
|
@multimethod
|
|
|
|
def distance(s1: str, s2: str):
|
|
|
|
def distance(s1: str, s2: str):
|
|
|
|
"""Compute the Levenshtein edit distance between two Unicode strings
|
|
|
|
"""Compute the Levenshtein edit distance between two Unicode strings
|
|
|
|
|
|
|
|
|
|
|
|
Note that this is different from levenshtein() as this function knows about Unicode normalization and grapheme
|
|
|
|
Note that this is different from levenshtein() as this function knows about Unicode
|
|
|
|
clusters. This should be the correct way to compare two Unicode strings.
|
|
|
|
normalization and grapheme clusters. This should be the correct way to compare two
|
|
|
|
|
|
|
|
Unicode strings.
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
seq1 = list(grapheme_clusters(unicodedata.normalize("NFC", s1)))
|
|
|
|
seq1 = list(grapheme_clusters(unicodedata.normalize("NFC", s1)))
|
|
|
|
seq2 = list(grapheme_clusters(unicodedata.normalize("NFC", s2)))
|
|
|
|
seq2 = list(grapheme_clusters(unicodedata.normalize("NFC", s2)))
|
|
|
@ -92,47 +32,6 @@ def distance(s1: ExtractedText, s2: ExtractedText):
|
|
|
|
return distance(s1.text, s2.text)
|
|
|
|
return distance(s1.text, s2.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def seq_editops(seq1, seq2):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Return sequence of edit operations transforming one sequence to another.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This aims to return the same/similar results as python-Levenshtein's editops(), just generalized to arbitrary
|
|
|
|
|
|
|
|
sequences.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
seq1 = list(seq1)
|
|
|
|
|
|
|
|
seq2 = list(seq2)
|
|
|
|
|
|
|
|
m = len(seq1)
|
|
|
|
|
|
|
|
n = len(seq2)
|
|
|
|
|
|
|
|
D = levenshtein_matrix(seq1, seq2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _tail_backtrace(i, j, accumulator):
|
|
|
|
|
|
|
|
if i > 0 and D[i - 1, j] + 1 == D[i, j]:
|
|
|
|
|
|
|
|
return partial(
|
|
|
|
|
|
|
|
_tail_backtrace, i - 1, j, [("delete", i - 1, j)] + accumulator
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
if j > 0 and D[i, j - 1] + 1 == D[i, j]:
|
|
|
|
|
|
|
|
return partial(
|
|
|
|
|
|
|
|
_tail_backtrace, i, j - 1, [("insert", i, j - 1)] + accumulator
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
if i > 0 and j > 0 and D[i - 1, j - 1] + 1 == D[i, j]:
|
|
|
|
|
|
|
|
return partial(
|
|
|
|
|
|
|
|
_tail_backtrace, i - 1, j - 1, [("replace", i - 1, j - 1)] + accumulator
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
if i > 0 and j > 0 and D[i - 1, j - 1] == D[i, j]:
|
|
|
|
|
|
|
|
return partial(_tail_backtrace, i - 1, j - 1, accumulator) # NOP
|
|
|
|
|
|
|
|
return accumulator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def backtrace(i, j):
|
|
|
|
|
|
|
|
result = partial(_tail_backtrace, i, j, [])
|
|
|
|
|
|
|
|
while isinstance(result, partial):
|
|
|
|
|
|
|
|
result = result()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = backtrace(m, n)
|
|
|
|
|
|
|
|
return b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def editops(word1, word2):
|
|
|
|
def editops(word1, word2):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Return sequence of edit operations transforming one string to another.
|
|
|
|
Return sequence of edit operations transforming one string to another.
|
|
|
@ -141,4 +40,4 @@ def editops(word1, word2):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
word1 = list(grapheme_clusters(unicodedata.normalize("NFC", word1)))
|
|
|
|
word1 = list(grapheme_clusters(unicodedata.normalize("NFC", word1)))
|
|
|
|
word2 = list(grapheme_clusters(unicodedata.normalize("NFC", word2)))
|
|
|
|
word2 = list(grapheme_clusters(unicodedata.normalize("NFC", word2)))
|
|
|
|
return seq_editops(word1, word2)
|
|
|
|
return levenshtein_editops(word1, word2)
|
|
|
|