You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.5 KiB
Python
84 lines
2.5 KiB
Python
from __future__ import division
|
|
|
|
import unicodedata
|
|
from typing import Tuple
|
|
|
|
import uniseg.wordbreak
|
|
|
|
from .edit_distance import levenshtein
|
|
|
|
|
|
def words(s):
|
|
# Patch uniseg.wordbreak.word_break to deal with our private use characters. See also
|
|
# https://www.unicode.org/Public/UCD/latest/ucd/auxiliary/WordBreakProperty.txt
|
|
old_word_break = uniseg.wordbreak.word_break
|
|
|
|
def new_word_break(c, index=0):
|
|
if 0xE000 <= ord(c) <= 0xF8FF: # Private Use Area
|
|
return 'ALetter'
|
|
else:
|
|
return old_word_break(c, index)
|
|
uniseg.wordbreak.word_break = new_word_break
|
|
|
|
# Check if c is an unwanted character, i.e. whitespace, punctuation, or similar
|
|
def unwanted(c):
|
|
|
|
# See https://www.fileformat.info/info/unicode/category/index.htm
|
|
# and https://unicodebook.readthedocs.io/unicode.html#categories
|
|
unwanted_categories = 'O', 'M', 'P', 'Z', 'S'
|
|
unwanted_subcategories = 'Cc', 'Cf'
|
|
|
|
subcat = unicodedata.category(c)
|
|
cat = subcat[0]
|
|
return cat in unwanted_categories or subcat in unwanted_subcategories
|
|
|
|
# XXX
|
|
from .cli import ExtractedText
|
|
if isinstance(s, ExtractedText):
|
|
s = s.text
|
|
|
|
# We follow Unicode Standard Annex #29 on Unicode Text Segmentation here: Split on word boundaries using
|
|
# uniseg.wordbreak.words() and ignore all "words" that contain only whitespace, punctation "or similar characters."
|
|
for word in uniseg.wordbreak.words(s):
|
|
if all(unwanted(c) for c in word):
|
|
pass
|
|
else:
|
|
yield word
|
|
|
|
|
|
def words_normalized(s):
|
|
# XXX
|
|
from .cli import ExtractedText
|
|
if isinstance(s, ExtractedText):
|
|
s = s.text
|
|
return words(unicodedata.normalize('NFC', s))
|
|
|
|
|
|
def word_error_rate_n(reference, compared) -> Tuple[float, int]:
|
|
# XXX
|
|
from .cli import ExtractedText
|
|
if isinstance(reference, ExtractedText):
|
|
reference = reference.text
|
|
if isinstance(compared, ExtractedText):
|
|
compared = compared.text
|
|
if isinstance(reference, str):
|
|
reference_seq = list(words_normalized(reference))
|
|
compared_seq = list(words_normalized(compared))
|
|
else:
|
|
reference_seq = list(reference)
|
|
compared_seq = list(compared)
|
|
|
|
d = levenshtein(reference_seq, compared_seq)
|
|
n = len(reference_seq)
|
|
|
|
if d == 0:
|
|
return 0, n
|
|
if n == 0:
|
|
return float('inf'), n
|
|
return d / n, n
|
|
|
|
|
|
def word_error_rate(reference, compared) -> float:
|
|
wer, _ = word_error_rate_n(reference, compared)
|
|
return wer
|