|
|
import enum
|
|
|
import re
|
|
|
import unicodedata
|
|
|
from contextlib import suppress
|
|
|
from itertools import repeat
|
|
|
from typing import Optional
|
|
|
|
|
|
import attr
|
|
|
import numpy as np
|
|
|
from lxml import etree as ET
|
|
|
from ocrd_utils import getLogger
|
|
|
|
|
|
|
|
|
class Normalization(enum.Enum):
|
|
|
NFC = 1
|
|
|
NFC_MUFI = 2 # TODO
|
|
|
NFC_SBB = 3
|
|
|
|
|
|
|
|
|
def normalize(text, normalization):
|
|
|
if normalization == Normalization.NFC:
|
|
|
return unicodedata.normalize("NFC", text)
|
|
|
if normalization == Normalization.NFC_MUFI:
|
|
|
raise NotImplementedError()
|
|
|
if normalization == Normalization.NFC_SBB:
|
|
|
return substitute_equivalences(text)
|
|
|
else:
|
|
|
raise ValueError()
|
|
|
|
|
|
|
|
|
# XXX hack
|
|
|
def normalize_sbb(t):
|
|
|
return normalize(t, Normalization.NFC_SBB)
|
|
|
|
|
|
|
|
|
def unjoin_ligatures(s):
|
|
|
"""Unjoin ligatures, i.e. ff becomes ff."""
|
|
|
|
|
|
equivalences = {
|
|
|
"": "ſſ",
|
|
|
"\ueba7": "ſſi", # MUFI: LATIN SMALL LIGATURE LONG S LONG S I
|
|
|
"": "ch",
|
|
|
"": "ck",
|
|
|
"": "ll",
|
|
|
"": "ſi",
|
|
|
"": "ſt",
|
|
|
"fi": "fi",
|
|
|
"ff": "ff",
|
|
|
"fl": "fl",
|
|
|
"ffi": "ffi",
|
|
|
"": "ct",
|
|
|
"": "tz", # MUFI: LATIN SMALL LIGATURE TZ
|
|
|
"\uf532": "as", # eMOP: Latin small ligature as
|
|
|
"\uf533": "is", # eMOP: Latin small ligature is
|
|
|
"\uf534": "us", # eMOP: Latin small ligature us
|
|
|
"\uf535": "Qu", # eMOP: Latin ligature capital Q small u
|
|
|
"ij": "ij", # U+0133 LATIN SMALL LIGATURE IJ
|
|
|
"\uE8BF": "q&",
|
|
|
# MUFI: LATIN SMALL LETTER Q LIGATED WITH FINAL ET
|
|
|
# XXX How to replace this correctly?
|
|
|
"\uEBA5": "ſp", # MUFI: LATIN SMALL LIGATURE LONG S P
|
|
|
"st": "st", # U+FB06 LATIN SMALL LIGATURE ST
|
|
|
}
|
|
|
s = unicodedata.normalize("NFC", s)
|
|
|
for fr, to in equivalences.items():
|
|
|
s = s.replace(fr, to)
|
|
|
return s
|
|
|
|
|
|
|
|
|
def substitute_equivalences(s):
|
|
|
# These are for OCR-D GT vs Tesseract frk vs Calamari GT4HistOCR
|
|
|
# It might make sense to use different rules for GT and for the different OCR
|
|
|
equivalences = {
|
|
|
"": "ü",
|
|
|
"": "ä",
|
|
|
"==": "–", # → en-dash
|
|
|
"—": "–", # em-dash → en-dash
|
|
|
"": "ö",
|
|
|
"’": "'",
|
|
|
"⸗": "-",
|
|
|
"aͤ": "ä", # LATIN SMALL LETTER A, COMBINING LATIN SMALL LETTER E
|
|
|
"oͤ": "ö", # LATIN SMALL LETTER O, COMBINING LATIN SMALL LETTER E
|
|
|
"uͤ": "ü", # LATIN SMALL LETTER U, COMBINING LATIN SMALL LETTER E
|
|
|
"\uF50E": "q́", # U+F50E LATIN SMALL LETTER Q WITH ACUTE ACCENT
|
|
|
}
|
|
|
|
|
|
s = unicodedata.normalize("NFC", s)
|
|
|
s = unjoin_ligatures(s)
|
|
|
for fr, to in equivalences.items():
|
|
|
s = s.replace(fr, to)
|
|
|
return s
|
|
|
|
|
|
|
|
|
@attr.s(frozen=True)
|
|
|
class ExtractedText:
|
|
|
"""
|
|
|
Extracted text.
|
|
|
|
|
|
We need a segment id for each extracted text segment. As this should support
|
|
|
extracting from the word (or even glyph) level, we need to have a
|
|
|
hierarchical representation of the
|
|
|
text due to the different "joiners" needed on each level.
|
|
|
|
|
|
For example, here is pseudo code to get the text of a page:
|
|
|
|
|
|
* from region texts:
|
|
|
`'\n'.join(region_texts)`
|
|
|
* from line texts:
|
|
|
`'\n'.join('\n'.join(line_texts) for every region`)
|
|
|
* from word texts:
|
|
|
`'\n'.join(('\n'.join(' '.join(word_texts) for every line) for every region))`
|
|
|
|
|
|
An ExtractedText object either contains a text itself or has child segments
|
|
|
(and a joiner), not both.
|
|
|
|
|
|
Objects of this class are guaranteed to be a. always in their normalization
|
|
|
and b. in NFC.
|
|
|
"""
|
|
|
|
|
|
segment_id = attr.ib(type=Optional[str])
|
|
|
|
|
|
@segment_id.validator
|
|
|
def check(self, _, value):
|
|
|
if value is None:
|
|
|
return
|
|
|
if not re.match(r"[\w\d_-]+", value):
|
|
|
raise ValueError('Malformed segment id "{}"'.format(value))
|
|
|
|
|
|
# An object contains either
|
|
|
# a. _text itself
|
|
|
# b. or segments (ExtractedText) and a joiner
|
|
|
|
|
|
segments = attr.ib(type=Optional[list], converter=attr.converters.optional(list))
|
|
|
joiner = attr.ib(type=Optional[str])
|
|
|
_text = attr.ib(type=Optional[str])
|
|
|
|
|
|
@segments.validator
|
|
|
def check(self, _, value):
|
|
|
if value is not None and self._text is not None:
|
|
|
raise ValueError("Can't have both segments and text")
|
|
|
|
|
|
@_text.validator
|
|
|
def check(self, _, value):
|
|
|
if value is not None and self.segments is not None:
|
|
|
raise ValueError("Can't have both segments and text")
|
|
|
if value is not None and unicodedata.normalize("NFC", value) != value:
|
|
|
raise ValueError('String "{}" is not in NFC.'.format(value))
|
|
|
if value is not None and normalize(value, self.normalization) != value:
|
|
|
raise ValueError('String "{}" is not normalized.'.format(value))
|
|
|
|
|
|
normalization = attr.ib(converter=Normalization, default=Normalization.NFC_SBB)
|
|
|
|
|
|
@property
|
|
|
def text(self):
|
|
|
if self._text is not None:
|
|
|
return self._text
|
|
|
else:
|
|
|
return self.joiner.join(s.text for s in self.segments)
|
|
|
|
|
|
_segment_id_for_pos = None
|
|
|
|
|
|
def segment_id_for_pos(self, pos):
|
|
|
# Calculate segment ids once, on the first call
|
|
|
if not self._segment_id_for_pos:
|
|
|
if self._text is not None:
|
|
|
segment_id_for_pos = list(repeat(self.segment_id, len(self._text)))
|
|
|
else:
|
|
|
# Recurse
|
|
|
segment_id_for_pos = []
|
|
|
for s in self.segments:
|
|
|
seg_ids = [s.segment_id_for_pos(i) for i in range(len(s.text))]
|
|
|
segment_id_for_pos.extend(seg_ids)
|
|
|
segment_id_for_pos.extend(repeat(None, len(self.joiner)))
|
|
|
segment_id_for_pos = segment_id_for_pos[: -len(self.joiner)]
|
|
|
|
|
|
# This is frozen, so we have to jump through the hoop:
|
|
|
object.__setattr__(self, "_segment_id_for_pos", segment_id_for_pos)
|
|
|
assert self._segment_id_for_pos
|
|
|
|
|
|
return self._segment_id_for_pos[pos]
|
|
|
|
|
|
@classmethod
|
|
|
def from_text_segment(cls, text_segment, nsmap, textequiv_level="region"):
|
|
|
"""Build an ExtractedText from a PAGE content text element"""
|
|
|
|
|
|
localname_for_textequiv_level = {"region": "TextRegion", "line": "TextLine"}
|
|
|
textequiv_level_for_localname = invert_dict(localname_for_textequiv_level)
|
|
|
children_for_localname = {"TextRegion": "TextLine"}
|
|
|
joiner_for_textequiv_level = {"line": "\n"}
|
|
|
|
|
|
segment_id = text_segment.attrib["id"]
|
|
|
localname = ET.QName(text_segment).localname
|
|
|
if localname == localname_for_textequiv_level[textequiv_level]:
|
|
|
segment_text = None
|
|
|
with suppress(AttributeError):
|
|
|
segment_text = get_textequiv_unicode(text_segment, nsmap)
|
|
|
# FIXME hardcoded SBB normalization
|
|
|
segment_text = normalize_sbb(segment_text)
|
|
|
segment_text = segment_text or ""
|
|
|
return cls(segment_id, None, None, segment_text)
|
|
|
else:
|
|
|
# Recurse
|
|
|
sub_localname = children_for_localname[localname]
|
|
|
sub_textequiv_level = textequiv_level_for_localname[sub_localname]
|
|
|
segments = []
|
|
|
for sub_segment in text_segment.iterfind(
|
|
|
"./page:%s" % sub_localname, namespaces=nsmap
|
|
|
):
|
|
|
segments.append(
|
|
|
ExtractedText.from_text_segment(
|
|
|
sub_segment, nsmap, textequiv_level=sub_textequiv_level
|
|
|
)
|
|
|
)
|
|
|
joiner = joiner_for_textequiv_level[sub_textequiv_level]
|
|
|
return cls(segment_id, segments, joiner, None)
|
|
|
|
|
|
@classmethod
|
|
|
def from_str(cls, text, normalization=Normalization.NFC_SBB):
|
|
|
normalized_text = normalize(text, normalization)
|
|
|
return cls(None, None, None, normalized_text, normalization=normalization)
|
|
|
|
|
|
|
|
|
def invert_dict(d):
|
|
|
"""Invert the given dict."""
|
|
|
return {v: k for k, v in d.items()}
|
|
|
|
|
|
|
|
|
def get_textequiv_unicode(text_segment, nsmap) -> str:
|
|
|
"""Get the TextEquiv/Unicode text of the given PAGE text element."""
|
|
|
segment_id = text_segment.attrib["id"]
|
|
|
textequivs = text_segment.findall("./page:TextEquiv", namespaces=nsmap)
|
|
|
|
|
|
if not textequivs:
|
|
|
return ""
|
|
|
|
|
|
textequiv = get_first_textequiv(textequivs, segment_id)
|
|
|
return textequiv.find("./page:Unicode", namespaces=nsmap).text or ""
|
|
|
|
|
|
|
|
|
def get_first_textequiv(textequivs, segment_id):
|
|
|
"""Get the first TextEquiv based on index or conf order if index is not present."""
|
|
|
log = getLogger("processor.OcrdDinglehopperEvaluate")
|
|
|
if len(textequivs) == 1:
|
|
|
return textequivs[0]
|
|
|
|
|
|
# try ordering by index
|
|
|
indices = np.array([get_attr(te, "index") for te in textequivs], dtype=float)
|
|
|
nan_mask = np.isnan(indices)
|
|
|
if np.any(~nan_mask):
|
|
|
if np.any(nan_mask):
|
|
|
log.warning("TextEquiv without index in %s.", segment_id)
|
|
|
index = np.nanargmin(indices)
|
|
|
else:
|
|
|
# try ordering by conf
|
|
|
confidences = np.array([get_attr(te, "conf") for te in textequivs], dtype=float)
|
|
|
if np.any(~np.isnan(confidences)):
|
|
|
log.info(
|
|
|
"No index attributes, use 'conf' attribute to sort TextEquiv in %s.",
|
|
|
segment_id,
|
|
|
)
|
|
|
index = np.nanargmax(confidences)
|
|
|
else:
|
|
|
# fallback to first entry in case of neither index or conf present
|
|
|
log.warning("No index attributes, use first TextEquiv in %s.", segment_id)
|
|
|
index = 0
|
|
|
return textequivs[index]
|
|
|
|
|
|
|
|
|
def get_attr(te, attr_name) -> float:
|
|
|
"""Extract the attribute for the given name.
|
|
|
|
|
|
Note: currently only handles numeric values!
|
|
|
Other or non existend values are encoded as np.nan.
|
|
|
"""
|
|
|
attr_value = te.attrib.get(attr_name)
|
|
|
try:
|
|
|
return float(attr_value)
|
|
|
except TypeError:
|
|
|
return np.nan
|