mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-12-01 08:44:13 +01:00
🔥 remove torch pinning
This commit is contained in:
parent
e503c1a0b7
commit
000af16a47
2 changed files with 8 additions and 12 deletions
|
|
@ -1,2 +1,2 @@
|
||||||
torch <= 2.0.1
|
torch
|
||||||
transformers <= 4.30.2
|
transformers <= 4.30.2
|
||||||
|
|
|
||||||
|
|
@ -9,15 +9,13 @@ Tool to load model and binarize a given image.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from typing import Optional
|
||||||
from typing import Dict, Optional
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
from ocrd_utils import tf_disable_interactive_logs
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
|
|
||||||
from eynollah.model_zoo import EynollahModelZoo
|
from eynollah.model_zoo import EynollahModelZoo
|
||||||
from eynollah.model_zoo.types import AnyModel
|
|
||||||
tf_disable_interactive_logs()
|
tf_disable_interactive_logs()
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import backend as tensorflow_backend
|
from tensorflow.python.keras import backend as tensorflow_backend
|
||||||
|
|
@ -323,7 +321,7 @@ class SbbBinarizer:
|
||||||
image = cv2.imread(image_path)
|
image = cv2.imread(image_path)
|
||||||
img_last = 0
|
img_last = 0
|
||||||
model_file, model = self.models
|
model_file, model = self.models
|
||||||
self.logger.info('Predicting %s with model %s [%s/%s]', image_path if image_path else '[image]', model_file)
|
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
||||||
res = self.predict(model, image, use_patches)
|
res = self.predict(model, image, use_patches)
|
||||||
|
|
||||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||||
|
|
@ -338,7 +336,6 @@ class SbbBinarizer:
|
||||||
img_fin = (res[:, :] == 0) * 255
|
img_fin = (res[:, :] == 0) * 255
|
||||||
img_last = img_last + img_fin
|
img_last = img_last + img_fin
|
||||||
|
|
||||||
kernel = np.ones((5, 5), np.uint8)
|
|
||||||
img_last[:, :][img_last[:, :] > 0] = 255
|
img_last[:, :][img_last[:, :] > 0] = 255
|
||||||
img_last = (img_last[:, :] == 0) * 255
|
img_last = (img_last[:, :] == 0) * 255
|
||||||
if output:
|
if output:
|
||||||
|
|
@ -348,13 +345,13 @@ class SbbBinarizer:
|
||||||
else:
|
else:
|
||||||
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
||||||
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
||||||
for i, image_name in enumerate(ls_imgs):
|
for i, image_path in enumerate(ls_imgs):
|
||||||
image_stem = image_name.split('.')[0]
|
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_path)
|
||||||
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_name)
|
image_stem = image_path.split('.')[0]
|
||||||
image = cv2.imread(os.path.join(dir_in,image_name) )
|
image = cv2.imread(os.path.join(dir_in,image_path) )
|
||||||
img_last = 0
|
img_last = 0
|
||||||
model_file, model = self.models
|
model_file, model = self.models
|
||||||
self.logger.info('Predicting %s with model %s [%s/%s]', image_path if image_path else '[image]', model_file)
|
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
||||||
res = self.predict(model, image, use_patches)
|
res = self.predict(model, image, use_patches)
|
||||||
|
|
||||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||||
|
|
@ -369,7 +366,6 @@ class SbbBinarizer:
|
||||||
img_fin = (res[:, :] == 0) * 255
|
img_fin = (res[:, :] == 0) * 255
|
||||||
img_last = img_last + img_fin
|
img_last = img_last + img_fin
|
||||||
|
|
||||||
kernel = np.ones((5, 5), np.uint8)
|
|
||||||
img_last[:, :][img_last[:, :] > 0] = 255
|
img_last[:, :][img_last[:, :] > 0] = 255
|
||||||
img_last = (img_last[:, :] == 0) * 255
|
img_last = (img_last[:, :] == 0) * 255
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue