do_order_of_regions_with_model: simplify

pull/142/head
Robert Sachunsky 3 months ago
parent 0ae28f7d3e
commit 01376af905

@ -2771,6 +2771,7 @@ class Eynollah:
for ijv in range(len(y_min_tab_col1)):
image_revised_last[int(y_min_tab_col1[ijv]):int(y_max_tab_col1[ijv]),:,:]=pixel_table
return image_revised_last
def do_order_of_regions(self, *args, **kwargs):
if self.full_layout:
return self.do_order_of_regions_full_layout(*args, **kwargs)
@ -3380,171 +3381,35 @@ class Eynollah:
model = load_model(model_file , compile=False,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
return model
def do_order_of_regions_with_model(self,contours_only_text_parent, contours_only_text_parent_h, text_regions_p):
y_len = text_regions_p.shape[0]
x_len = text_regions_p.shape[1]
img_poly = np.zeros((y_len,x_len), dtype='uint8')
unique_pix = np.unique(text_regions_p)
img_poly = np.zeros((y_len,x_len), dtype='uint8')
img_poly[text_regions_p[:,:]==1] = 1
img_poly[text_regions_p[:,:]==2] = 2
img_poly[text_regions_p[:,:]==3] = 4
img_poly[text_regions_p[:,:]==6] = 5
if not self.dir_in:
self.model_reading_order, _ = self.start_new_session_and_model(self.model_reading_order_dir)
height1 =672#448
width1 = 448#224
height2 =672#448
width2= 448#224
height3 =672#448
width3 = 448#224
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
if contours_only_text_parent_h:
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(contours_only_text_parent_h)
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
co_text_all = contours_only_text_parent + contours_only_text_parent_h
else:
co_text_all = contours_only_text_parent
if not len(co_text_all):
return [], []
labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8')
labels_con = np.zeros((y_len, x_len, len(co_text_all)), dtype=bool)
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
labels_con[:,:,i] = img_label[:,:,0]
img3= np.copy(img_poly)
labels_con = resize_image(labels_con, height1, width1)
img_header_and_sep = resize_image(img_header_and_sep, height1, width1)
img3= resize_image (img3, height3, width3)
img3 = img3.astype(np.uint16)
order_matrix = np.zeros((labels_con.shape[2], labels_con.shape[2]))-1
inference_bs = 6
tot_counter = 1
batch_counter = 0
i_indexer = []
j_indexer =[]
input_1= np.zeros( (inference_bs, height1, width1,3))
tot_iteration = int( ( labels_con.shape[2]*(labels_con.shape[2]-1) )/2. )
full_bs_ite= tot_iteration//inference_bs
last_bs = tot_iteration % inference_bs
#print(labels_con.shape[2],"number of regions for reading order")
for i in range(labels_con.shape[2]):
for j in range(labels_con.shape[2]):
if j>i:
img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2)
img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2)
img2[:,:,0][img3[:,:]==5] = 2
img2[:,:,0][img_header_and_sep[:,:]==1] = 3
img1[:,:,0][img3[:,:]==5] = 2
img1[:,:,0][img_header_and_sep[:,:]==1] = 3
i_indexer.append(i)
j_indexer.append(j)
input_1[batch_counter,:,:,0] = img1[:,:,0]/3.
input_1[batch_counter,:,:,2] = img2[:,:,0]/3.
input_1[batch_counter,:,:,1] = img3[:,:]/5.
batch_counter = batch_counter+1
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
y_pr = self.model_reading_order.predict(input_1 , verbose=0)
if batch_counter==inference_bs:
iteration_batches = inference_bs
else:
iteration_batches = last_bs
for jb in range(iteration_batches):
if y_pr[jb][0]>=0.5:
order_class = 1
else:
order_class = 0
order_matrix[i_indexer[jb],j_indexer[jb]] = y_pr[jb][0]#order_class
order_matrix[j_indexer[jb],i_indexer[jb]] = 1-y_pr[jb][0]#int( 1 - order_class)
batch_counter = 0
i_indexer = []
j_indexer = []
tot_counter = tot_counter+1
sum_mat = np.sum(order_matrix, axis=1)
index_sort = np.argsort(sum_mat)
index_sort = index_sort[::-1]
REGION_ID_TEMPLATE = 'region_%04d'
order_of_texts = []
id_of_texts = []
for order, id_text in enumerate(index_sort):
order_of_texts.append(id_text)
id_of_texts.append( REGION_ID_TEMPLATE % order )
return order_of_texts, id_of_texts
def update_list_and_return_first_with_length_bigger_than_one(self,index_element_to_be_updated, innner_index_pr_pos, pr_list, pos_list,list_inp):
list_inp.pop(index_element_to_be_updated)
if len(pr_list)>0:
list_inp.insert(index_element_to_be_updated, pr_list)
else:
index_element_to_be_updated = index_element_to_be_updated -1
list_inp.insert(index_element_to_be_updated+1, [innner_index_pr_pos])
if len(pos_list)>0:
list_inp.insert(index_element_to_be_updated+2, pos_list)
len_all_elements = [len(i) for i in list_inp]
list_len_bigger_1 = np.where(np.array(len_all_elements)>1)
list_len_bigger_1 = list_len_bigger_1[0]
if len(list_len_bigger_1)>0:
early_list_bigger_than_one = list_len_bigger_1[0]
else:
early_list_bigger_than_one = -20
return list_inp, early_list_bigger_than_one
def do_order_of_regions_with_model_optimized_algorithm(self,contours_only_text_parent, contours_only_text_parent_h, text_regions_p):
y_len = text_regions_p.shape[0]
x_len = text_regions_p.shape[1]
img_poly = np.zeros((y_len,x_len), dtype='uint8')
unique_pix = np.unique(text_regions_p)
img_poly[text_regions_p[:,:]==1] = 1
img_poly[text_regions_p[:,:]==2] = 2
img_poly[text_regions_p[:,:]==3] = 4
img_poly[text_regions_p[:,:]==6] = 5
if not self.dir_in:
self.model_reading_order, _ = self.start_new_session_and_model(self.model_reading_order_dir)
img = labels_con[:,:,i].astype(np.uint8)
cv2.fillPoly(img, pts=[co_text_all[i]], color=(1,))
labels_con[:,:,i] = img
height1 =672#448
width1 = 448#224
@ -3554,112 +3419,67 @@ class Eynollah:
height3 =672#448
width3 = 448#224
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
if contours_only_text_parent_h:
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(contours_only_text_parent_h)
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
co_text_all = contours_only_text_parent + contours_only_text_parent_h
else:
co_text_all = contours_only_text_parent
labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8')
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
labels_con[:,:,i] = img_label[:,:,0]
img3= np.copy(img_poly)
labels_con = resize_image(labels_con, height1, width1)
labels_con = resize_image(labels_con.astype(np.uint8), height1, width1).astype(bool)
img_header_and_sep = resize_image(img_header_and_sep, height1, width1)
img_poly = resize_image(img_poly, height3, width3)
img3= resize_image (img3, height3, width3)
if not self.dir_in:
self.model_reading_order, _ = self.start_new_session_and_model(self.model_reading_order_dir)
img3 = img3.astype(np.uint16)
inference_bs = 3
input_1= np.zeros( (inference_bs, height1, width1,3))
starting_list_of_regions = []
if len(co_text_all)<=1:
starting_list_of_regions.append( list(range(1)) )
else:
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
input_1 = np.zeros((inference_bs, height1, width1, 3))
ordered = [list(range(len(co_text_all)))]
index_update = 0
index_selected = starting_list_of_regions[0]
#print(labels_con.shape[2],"number of regions for reading order")
while index_update>=0:
ij_list = starting_list_of_regions[index_update]
i = ij_list[0]
ij_list.pop(0)
pr_list = []
ij_list = ordered.pop(index_update)
i = ij_list.pop(0)
ante_list = []
post_list = []
batch_counter = 0
tot_counter = 1
tot_iteration = len(ij_list)
full_bs_ite= tot_iteration//inference_bs
last_bs = tot_iteration % inference_bs
jbatch_indexer =[]
tot_counter = 0
batch = []
for j in ij_list:
img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2)
img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2)
img2[:,:,0][img3[:,:]==5] = 2
img2[:,:,0][img_header_and_sep[:,:]==1] = 3
img1[:,:,0][img3[:,:]==5] = 2
img1[:,:,0][img_header_and_sep[:,:]==1] = 3
jbatch_indexer.append(j)
input_1[batch_counter,:,:,0] = img1[:,:,0]/3.
input_1[batch_counter,:,:,2] = img2[:,:,0]/3.
input_1[batch_counter,:,:,1] = img3[:,:]/5.
batch_counter = batch_counter+1
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
img1 = labels_con[:,:,i].astype(float)
img2 = labels_con[:,:,j].astype(float)
img1[img_poly==5] = 2
img2[img_poly==5] = 2
img1[img_header_and_sep==1] = 3
img2[img_header_and_sep==1] = 3
input_1[len(batch), :, :, 0] = img1 / 3.
input_1[len(batch), :, :, 2] = img2 / 3.
input_1[len(batch), :, :, 1] = img_poly / 5.
tot_counter += 1
batch.append(j)
if tot_counter % inference_bs == 0 or tot_counter == len(ij_list):
y_pr = self.model_reading_order.predict(input_1 , verbose=0)
if batch_counter==inference_bs:
iteration_batches = inference_bs
else:
iteration_batches = last_bs
for jb in range(iteration_batches):
for jb, j in enumerate(batch):
if y_pr[jb][0]>=0.5:
post_list.append(jbatch_indexer[jb])
post_list.append(j)
else:
pr_list.append(jbatch_indexer[jb])
batch_counter = 0
jbatch_indexer = []
tot_counter = tot_counter+1
starting_list_of_regions, index_update = self.update_list_and_return_first_with_length_bigger_than_one(index_update, i, pr_list, post_list,starting_list_of_regions)
ante_list.append(j)
batch = []
if len(ante_list):
ordered.insert(index_update, ante_list)
index_update += 1
ordered.insert(index_update, [i])
if len(post_list):
ordered.insert(index_update + 1, post_list)
index_update = -1
for index_next, ij_list in enumerate(ordered):
if len(ij_list) > 1:
index_update = index_next
break
ordered = [i[0] for i in ordered]
region_ids = ['region_%04d' % i for i in range(len(co_text_all))]
return ordered, region_ids
index_sort = [i[0] for i in starting_list_of_regions ]
REGION_ID_TEMPLATE = 'region_%04d'
order_of_texts = []
id_of_texts = []
for order, id_text in enumerate(index_sort):
order_of_texts.append(id_text)
id_of_texts.append( REGION_ID_TEMPLATE % order )
return order_of_texts, id_of_texts
def return_start_and_end_of_common_text_of_textline_ocr(self,textline_image, ind_tot):
width = np.shape(textline_image)[1]
height = np.shape(textline_image)[0]
@ -4980,7 +4800,7 @@ class Eynollah:
if self.full_layout:
if self.reading_order_machine_based:
order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model_optimized_algorithm(contours_only_text_parent, contours_only_text_parent_h, text_regions_p)
order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model(contours_only_text_parent, contours_only_text_parent_h, text_regions_p)
else:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
@ -5007,7 +4827,7 @@ class Eynollah:
else:
contours_only_text_parent_h = None
if self.reading_order_machine_based:
order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model_optimized_algorithm(contours_only_text_parent, contours_only_text_parent_h, text_regions_p)
order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model(contours_only_text_parent, contours_only_text_parent_h, text_regions_p)
else:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)

Loading…
Cancel
Save