#43 empty textlines caused by newer python-opencv, is resolved

pull/44/head
vahid 4 years ago
parent d1330ffb80
commit 059905c9e4

@ -387,7 +387,8 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
if point_down_narrow >= img_patch.shape[0]: if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2 point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
for mj in range(len(xv))] for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
@ -448,8 +449,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
pass pass
elif len(peaks) == 1: elif len(peaks) == 1:
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[0] + first_nonzero])), True)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[0] + first_nonzero), True)
for mj in range(len(xv))] for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
@ -530,7 +530,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
except: except:
point_up =peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next) point_up =peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
for mj in range(len(xv))] for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
@ -612,7 +612,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up) point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down) point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
for mj in range(len(xv))] for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
@ -789,7 +789,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
if point_down_narrow >= img_patch.shape[0]: if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2 point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True) for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
xvinside = xv[distances >= 0] xvinside = xv[distances >= 0]
@ -871,7 +871,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
point_down = img_patch.shape[0] - 2 point_down = img_patch.shape[0] - 2
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True) for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
xvinside = xv[distances >= 0] xvinside = xv[distances >= 0]
@ -931,7 +931,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True) for mj in range(len(xv))]
distances = np.array(distances) distances = np.array(distances)
xvinside = xv[distances >= 0] xvinside = xv[distances >= 0]
@ -1382,82 +1382,82 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1) # textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
# print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz') # print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
try: #try:
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(textline_mask) # plt.imshow(textline_mask)
# plt.show() # plt.show()
# if abs(slope)>1: # if abs(slope)>1:
# x_help=30 # x_help=30
# y_help=2 # y_help=2
# else: # else:
# x_help=2 # x_help=2
# y_help=2 # y_help=2
x_help = 30 x_help = 30
y_help = 2 y_help = 2
textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help), textline_mask.shape[1] + int(2 * x_help), 3)) textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help), textline_mask.shape[1] + int(2 * x_help), 3))
textline_mask_help[y_help : y_help + textline_mask.shape[0], x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :]) textline_mask_help[y_help : y_help + textline_mask.shape[0], x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
dst = rotate_image(textline_mask_help, slope) dst = rotate_image(textline_mask_help, slope)
dst = dst[:, :, 0] dst = dst[:, :, 0]
dst[dst != 0] = 1 dst[dst != 0] = 1
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(dst) # plt.imshow(dst)
# plt.show() # plt.show()
contour_text_copy = contour_text_interest.copy() contour_text_copy = contour_text_interest.copy()
contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[0] contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[0]
contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1] contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
img_contour = np.zeros((box_ind[3], box_ind[2], 3)) img_contour = np.zeros((box_ind[3], box_ind[2], 3))
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255)) img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour) # plt.imshow(img_contour)
# plt.show() # plt.show()
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help), img_contour.shape[1] + int(2 * x_help), 3)) img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help), img_contour.shape[1] + int(2 * x_help), 3))
img_contour_help[y_help : y_help + img_contour.shape[0], x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :]) img_contour_help[y_help : y_help + img_contour.shape[0], x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
img_contour_rot = rotate_image(img_contour_help, slope) img_contour_rot = rotate_image(img_contour_help, slope)
# plt.imshow(img_contour_rot_help) # plt.imshow(img_contour_rot_help)
# plt.show() # plt.show()
# plt.imshow(dst_help) # plt.imshow(dst_help)
# plt.show() # plt.show()
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour_rot_help) # plt.imshow(img_contour_rot_help)
# plt.show() # plt.show()
# plt.imshow(dst_help) # plt.imshow(dst_help)
# plt.show() # plt.show()
img_contour_rot = img_contour_rot.astype(np.uint8) img_contour_rot = img_contour_rot.astype(np.uint8)
# dst_help = dst_help.astype(np.uint8) # dst_help = dst_help.astype(np.uint8)
imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY) imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY)
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0) _, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))] len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
ind_big_con = np.argmax(len_con_text_rot) ind_big_con = np.argmax(len_con_text_rot)
# print('juzaa') # print('juzaa')
if abs(slope) > 45: if abs(slope) > 45:
# print(add_boxes_coor_into_textlines,'avval') # print(add_boxes_coor_into_textlines,'avval')
_, contours_rotated_clean = separate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines) _, contours_rotated_clean = separate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
else: else:
_, contours_rotated_clean = separate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help) _, contours_rotated_clean = separate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
except: #except:
contours_rotated_clean = [] #contours_rotated_clean = []
return contours_rotated_clean return contours_rotated_clean

Loading…
Cancel
Save