|
|
@ -1672,7 +1672,9 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables,
|
|
|
|
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,splitter_y_new,separators_closeup_n
|
|
|
|
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,splitter_y_new,separators_closeup_n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, tables):
|
|
|
|
def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, tables, right2left_readingorder):
|
|
|
|
|
|
|
|
if right2left_readingorder:
|
|
|
|
|
|
|
|
regions_without_separators = cv2.flip(regions_without_separators,1)
|
|
|
|
boxes=[]
|
|
|
|
boxes=[]
|
|
|
|
peaks_neg_tot_tables = []
|
|
|
|
peaks_neg_tot_tables = []
|
|
|
|
|
|
|
|
|
|
|
@ -1763,6 +1765,13 @@ def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_witho
|
|
|
|
cy_hor_diff=matrix_new[:,7][ (matrix_new[:,9]==0) ]
|
|
|
|
cy_hor_diff=matrix_new[:,7][ (matrix_new[:,9]==0) ]
|
|
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if right2left_readingorder:
|
|
|
|
|
|
|
|
x_max_hor_some_new = regions_without_separators.shape[1] - x_min_hor_some
|
|
|
|
|
|
|
|
x_min_hor_some_new = regions_without_separators.shape[1] - x_max_hor_some
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_min_hor_some =list(np.copy(x_min_hor_some_new))
|
|
|
|
|
|
|
|
x_max_hor_some =list(np.copy(x_max_hor_some_new))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -2027,6 +2036,7 @@ def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_witho
|
|
|
|
columns_not_covered_child_no_mother=np.sort(columns_not_covered_child_no_mother)
|
|
|
|
columns_not_covered_child_no_mother=np.sort(columns_not_covered_child_no_mother)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ind_args=np.array(range(len(y_type_2)))
|
|
|
|
ind_args=np.array(range(len(y_type_2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -2335,254 +2345,21 @@ def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_witho
|
|
|
|
|
|
|
|
|
|
|
|
#else:
|
|
|
|
#else:
|
|
|
|
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
|
|
|
|
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
|
|
|
|
return boxes, peaks_neg_tot_tables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_boxes_of_images_by_order_of_reading_new_right2left(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, tables):
|
|
|
|
|
|
|
|
boxes=[]
|
|
|
|
|
|
|
|
peaks_neg_tot_tables = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(splitter_y_new)-1):
|
|
|
|
|
|
|
|
#print(splitter_y_new[i],splitter_y_new[i+1])
|
|
|
|
|
|
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> splitter_y_new[i] ) & (matrix_of_lines_ch[:,7]< splitter_y_new[i+1] ) ]
|
|
|
|
|
|
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# check to see is there any vertical separator to find holes.
|
|
|
|
|
|
|
|
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(splitter_y_new[i+1]-splitter_y_new[i] )):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
if erosion_hurts:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:], num_col_classifier, tables, multiplier=6.)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],num_col_classifier, tables, multiplier=7.)
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
peaks_neg_fin=[]
|
|
|
|
|
|
|
|
num_col = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
peaks_neg_fin_org=np.copy(peaks_neg_fin)
|
|
|
|
|
|
|
|
if (len(peaks_neg_fin)+1)<num_col_classifier or num_col_classifier==6:
|
|
|
|
|
|
|
|
#print('burda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(peaks_neg_fin)==0:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],num_col_classifier, tables, multiplier=3.)
|
|
|
|
|
|
|
|
peaks_neg_fin_early=[]
|
|
|
|
|
|
|
|
peaks_neg_fin_early.append(0)
|
|
|
|
|
|
|
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
|
|
|
|
|
|
|
for p_n in peaks_neg_fin:
|
|
|
|
|
|
|
|
peaks_neg_fin_early.append(p_n)
|
|
|
|
|
|
|
|
peaks_neg_fin_early.append(regions_without_separators.shape[1]-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(peaks_neg_fin_early,'burda2')
|
|
|
|
|
|
|
|
peaks_neg_fin_rev=[]
|
|
|
|
|
|
|
|
for i_n in range(len(peaks_neg_fin_early)-1):
|
|
|
|
|
|
|
|
#print(i_n,'i_n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.plot(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]].sum(axis=0) )
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin1=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],num_col_classifier,tables, multiplier=7.)
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
peaks_neg_fin1=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin2=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],num_col_classifier,tables, multiplier=5.)
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
peaks_neg_fin2=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(peaks_neg_fin1)>=len(peaks_neg_fin2):
|
|
|
|
|
|
|
|
peaks_neg_fin=list(np.copy(peaks_neg_fin1))
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
peaks_neg_fin=list(np.copy(peaks_neg_fin2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg_fin=list(np.array(peaks_neg_fin)+peaks_neg_fin_early[i_n])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if i_n!=(len(peaks_neg_fin_early)-2):
|
|
|
|
|
|
|
|
peaks_neg_fin_rev.append(peaks_neg_fin_early[i_n+1])
|
|
|
|
|
|
|
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
|
|
|
|
|
|
|
peaks_neg_fin_rev=peaks_neg_fin_rev+peaks_neg_fin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(peaks_neg_fin_rev)>=len(peaks_neg_fin_org):
|
|
|
|
|
|
|
|
peaks_neg_fin=list(np.sort(peaks_neg_fin_rev))
|
|
|
|
|
|
|
|
num_col=len(peaks_neg_fin)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
peaks_neg_fin=list(np.copy(peaks_neg_fin_org))
|
|
|
|
|
|
|
|
num_col=len(peaks_neg_fin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
#num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=7.0)
|
|
|
|
|
|
|
|
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
cy_hor_diff=matrix_new[:,7][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg_tot=return_points_with_boundies(peaks_neg_fin,0, regions_without_separators[:,:].shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg_tot_tables.append(peaks_neg_tot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reading_order_type,x_starting,x_ending,y_type_2,y_diff_type_2,y_lines_without_mother,x_start_without_mother,x_end_without_mother,there_is_sep_with_child,y_lines_with_child_without_mother,x_start_with_child_without_mother,x_end_with_child_without_mother,new_main_sep_y=return_x_start_end_mothers_childs_and_type_of_reading_order(x_min_hor_some,x_max_hor_some,cy_hor_some,peaks_neg_tot,cy_hor_diff)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_lines_by_order=[]
|
|
|
|
|
|
|
|
x_start_by_order=[]
|
|
|
|
|
|
|
|
x_end_by_order=[]
|
|
|
|
|
|
|
|
if len(x_starting)>0:
|
|
|
|
|
|
|
|
all_columns = np.array(range(len(peaks_neg_tot)-1))
|
|
|
|
|
|
|
|
columns_covered_by_lines_covered_more_than_2col=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for dj in range(len(x_starting)):
|
|
|
|
|
|
|
|
if set( list(np.array(range(x_starting[dj],x_ending[dj])) ) ) == set(all_columns):
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
columns_covered_by_lines_covered_more_than_2col=columns_covered_by_lines_covered_more_than_2col+list(np.array(range(x_starting[dj],x_ending[dj])) )
|
|
|
|
|
|
|
|
columns_covered_by_lines_covered_more_than_2col=list(set(columns_covered_by_lines_covered_more_than_2col))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
columns_not_covered=list( set(all_columns)-set(columns_covered_by_lines_covered_more_than_2col) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_type_2=list(y_type_2)
|
|
|
|
|
|
|
|
x_starting=list(x_starting)
|
|
|
|
|
|
|
|
x_ending=list(x_ending)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for lj in columns_not_covered:
|
|
|
|
|
|
|
|
y_type_2.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
x_starting.append(lj)
|
|
|
|
|
|
|
|
x_ending.append(lj+1)
|
|
|
|
|
|
|
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
##x_start_by_order.append(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#y_type_2.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
#x_starting.append(x_starting[0])
|
|
|
|
|
|
|
|
#x_ending.append(x_ending[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(new_main_sep_y)>0:
|
|
|
|
|
|
|
|
y_type_2.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
x_starting.append(0)
|
|
|
|
|
|
|
|
x_ending.append(len(peaks_neg_tot)-1)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
y_type_2.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
x_starting.append(x_starting[0])
|
|
|
|
|
|
|
|
x_ending.append(x_ending[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_type_2=np.array(y_type_2)
|
|
|
|
|
|
|
|
x_starting=np.array(x_starting)
|
|
|
|
|
|
|
|
x_ending=np.array(x_ending)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
all_columns=np.array(range(len(peaks_neg_tot)-1))
|
|
|
|
|
|
|
|
columns_not_covered=list( set(all_columns) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_type_2=list(y_type_2)
|
|
|
|
|
|
|
|
x_starting=list(x_starting)
|
|
|
|
|
|
|
|
x_ending=list(x_ending)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for lj in columns_not_covered:
|
|
|
|
|
|
|
|
y_type_2.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
x_starting.append(lj)
|
|
|
|
|
|
|
|
x_ending.append(lj+1)
|
|
|
|
|
|
|
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
|
|
|
|
|
|
|
##x_start_by_order.append(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_type_2=np.array(y_type_2)
|
|
|
|
|
|
|
|
x_starting=np.array(x_starting)
|
|
|
|
|
|
|
|
x_ending=np.array(x_ending)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ind_args=np.array(range(len(y_type_2)))
|
|
|
|
|
|
|
|
#ind_args=np.array(ind_args)
|
|
|
|
|
|
|
|
#print(ind_args,'ind_args')
|
|
|
|
|
|
|
|
for column in range(len(peaks_neg_tot)-1,0,-1):
|
|
|
|
|
|
|
|
#print(column,'column')
|
|
|
|
|
|
|
|
ind_args_in_col=ind_args[x_ending==column]
|
|
|
|
|
|
|
|
ind_args_in_col=np.array(ind_args_in_col)
|
|
|
|
|
|
|
|
#print(len(y_type_2))
|
|
|
|
|
|
|
|
y_column=y_type_2[ind_args_in_col]
|
|
|
|
|
|
|
|
x_start_column=x_starting[ind_args_in_col]
|
|
|
|
|
|
|
|
x_end_column=x_ending[ind_args_in_col]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ind_args_col_sorted=np.argsort(y_column)
|
|
|
|
|
|
|
|
y_col_sort=y_column[ind_args_col_sorted]
|
|
|
|
|
|
|
|
x_start_column_sort=x_start_column[ind_args_col_sorted]
|
|
|
|
|
|
|
|
x_end_column_sort=x_end_column[ind_args_col_sorted]
|
|
|
|
|
|
|
|
#print('babali4')
|
|
|
|
|
|
|
|
for ii in range(len(y_col_sort)):
|
|
|
|
|
|
|
|
#print('babali5')
|
|
|
|
|
|
|
|
y_lines_by_order.append(y_col_sort[ii])
|
|
|
|
|
|
|
|
x_start_by_order.append(x_start_column_sort[ii])
|
|
|
|
|
|
|
|
x_end_by_order.append(x_end_column_sort[ii]-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for il in range(len(y_lines_by_order)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_copy=list( np.copy(y_lines_by_order) )
|
|
|
|
|
|
|
|
x_start_copy=list( np.copy(x_start_by_order) )
|
|
|
|
|
|
|
|
x_end_copy=list ( np.copy(x_end_by_order) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(y_copy,'y_copy')
|
|
|
|
|
|
|
|
y_itself=y_copy.pop(il)
|
|
|
|
|
|
|
|
x_start_itself=x_start_copy.pop(il)
|
|
|
|
|
|
|
|
x_end_itself=x_end_copy.pop(il)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(y_copy,'y_copy2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for column in range(x_end_itself+1-1,x_start_itself-1,-1):
|
|
|
|
|
|
|
|
#print(column,'cols')
|
|
|
|
|
|
|
|
y_in_cols=[]
|
|
|
|
|
|
|
|
for yic in range(len(y_copy)):
|
|
|
|
|
|
|
|
#print('burda')
|
|
|
|
|
|
|
|
if y_copy[yic]>y_itself and column>=x_start_copy[yic] and column<=x_end_copy[yic]:
|
|
|
|
|
|
|
|
y_in_cols.append(y_copy[yic])
|
|
|
|
|
|
|
|
#print('burda2')
|
|
|
|
|
|
|
|
#print(y_in_cols,'y_in_cols')
|
|
|
|
|
|
|
|
if len(y_in_cols)>0:
|
|
|
|
|
|
|
|
y_down=np.min(y_in_cols)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
y_down=[int(splitter_y_new[i+1])][0]
|
|
|
|
|
|
|
|
#print(y_itself,'y_itself')
|
|
|
|
|
|
|
|
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#else:
|
|
|
|
|
|
|
|
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
|
|
|
|
|
|
|
|
return boxes, peaks_neg_tot_tables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if right2left_readingorder:
|
|
|
|
|
|
|
|
peaks_neg_tot_tables_new = []
|
|
|
|
|
|
|
|
if len(peaks_neg_tot_tables)>=1:
|
|
|
|
|
|
|
|
for peaks_tab_ind in peaks_neg_tot_tables:
|
|
|
|
|
|
|
|
peaks_neg_tot_tables_ind = regions_without_separators.shape[1] - np.array(peaks_tab_ind)
|
|
|
|
|
|
|
|
peaks_neg_tot_tables_ind = list(peaks_neg_tot_tables_ind[::-1])
|
|
|
|
|
|
|
|
peaks_neg_tot_tables_new.append(peaks_neg_tot_tables_ind)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(boxes)):
|
|
|
|
|
|
|
|
x_start_new = regions_without_separators.shape[1] - boxes[i][1]
|
|
|
|
|
|
|
|
x_end_new = regions_without_separators.shape[1] - boxes[i][0]
|
|
|
|
|
|
|
|
boxes[i][0] = x_start_new
|
|
|
|
|
|
|
|
boxes[i][1] = x_end_new
|
|
|
|
|
|
|
|
return boxes, peaks_neg_tot_tables_new
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return boxes, peaks_neg_tot_tables
|
|
|
|