diff --git a/src/eynollah/utils/contour.py b/src/eynollah/utils/contour.py index 0700ed4..041cbf6 100644 --- a/src/eynollah/utils/contour.py +++ b/src/eynollah/utils/contour.py @@ -79,61 +79,37 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area=1. found_polygons_early.append(polygon2contour(polygon)) return found_polygons_early -def find_new_features_of_contours(contours_main): - areas_main = np.array([cv2.contourArea(contours_main[j]) - for j in range(len(contours_main))]) - M_main = [cv2.moments(contours_main[j]) - for j in range(len(contours_main))] - cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) - for j in range(len(M_main))] - cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) - for j in range(len(M_main))] - try: - x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) - for j in range(len(contours_main))]) - argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0]) - for j in range(len(contours_main))]) - x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0] - for j in range(len(contours_main))]) - y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1] - for j in range(len(contours_main))]) - x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) - for j in range(len(contours_main))]) - y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) - for j in range(len(contours_main))]) - y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) - for j in range(len(contours_main))]) - except: - x_min_main = np.array([np.min(contours_main[j][:, 0]) - for j in range(len(contours_main))]) - argmin_x_main = np.array([np.argmin(contours_main[j][:, 0]) - for j in range(len(contours_main))]) - x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0] - for j in range(len(contours_main))]) - y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 1] - for j in range(len(contours_main))]) - x_max_main = np.array([np.max(contours_main[j][:, 0]) - for j in range(len(contours_main))]) - y_min_main = np.array([np.min(contours_main[j][:, 1]) - for j in range(len(contours_main))]) - y_max_main = np.array([np.max(contours_main[j][:, 1]) - for j in range(len(contours_main))]) - # dis_x=np.abs(x_max_main-x_min_main) +def find_center_of_contours(contours): + moments = [cv2.moments(contour) for contour in contours] + cx = [feat["m10"] / (feat["m00"] + 1e-32) + for feat in moments] + cy = [feat["m01"] / (feat["m00"] + 1e-32) + for feat in moments] + return cx, cy - return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin +def find_new_features_of_contours(contours): + # areas = np.array([cv2.contourArea(contour) for contour in contours]) + cx, cy = find_center_of_contours(contours) + slice_x = np.index_exp[:, 0, 0] + slice_y = np.index_exp[:, 0, 1] + if any(contour.ndim < 3 for contour in contours): + slice_x = np.index_exp[:, 0] + slice_y = np.index_exp[:, 1] + x_min = np.array([np.min(contour[slice_x]) for contour in contours]) + x_max = np.array([np.max(contour[slice_x]) for contour in contours]) + y_min = np.array([np.min(contour[slice_y]) for contour in contours]) + y_max = np.array([np.max(contour[slice_y]) for contour in contours]) + # dis_x=np.abs(x_max-x_min) + y_corr_x_min = np.array([contour[np.argmin(contour[slice_x])][slice_y[1:]] + for contour in contours]) -def find_features_of_contours(contours_main): - areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) - M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))] - cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))] - cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))] - x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))]) - x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))]) + return cx, cy, x_min, x_max, y_min, y_max, y_corr_x_min - y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))]) - y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))]) +def find_features_of_contours(contours): + y_min = np.array([np.min(contour[:,0,1]) for contour in contours]) + y_max = np.array([np.max(contour[:,0,1]) for contour in contours]) - return y_min_main, y_max_main + return y_min, y_max def return_parent_contours(contours, hierarchy): contours_parent = [contours[i]