mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-15 19:09:58 +02:00
matching deskewed text region contours with predicted: improve
- when matching undeskewed and new contours, do not just pick the closest centers, respectively, but also of similar size (by making the contour area the 3rd dimension of the vector norm in the distance calculation)
This commit is contained in:
parent
73e5a1def8
commit
0f33c21eb3
1 changed files with 5 additions and 1 deletions
|
@ -4610,7 +4610,11 @@ class Eynollah:
|
||||||
for i in range(len(contours_only_text_parent)):
|
for i in range(len(contours_only_text_parent)):
|
||||||
p = np.dot(M_22, centers[:, i:i+1]) # [2, 1]
|
p = np.dot(M_22, centers[:, i:i+1]) # [2, 1]
|
||||||
p -= offset
|
p -= offset
|
||||||
dists = np.linalg.norm(p - centers_d, axis=0)
|
# add dimension for area
|
||||||
|
#dists = np.linalg.norm(p - centers_d, axis=0)
|
||||||
|
diffs = (np.append(p, [[areas_cnt_text_parent[i]]], axis=0) -
|
||||||
|
np.append(centers_d, areas_cnt_text_d[np.newaxis], axis=0))
|
||||||
|
dists = np.linalg.norm(diffs, axis=0)
|
||||||
contours_only_text_parent_d_ordered.append(
|
contours_only_text_parent_d_ordered.append(
|
||||||
contours_only_text_parent_d[np.argmin(dists)])
|
contours_only_text_parent_d[np.argmin(dists)])
|
||||||
# cv2.fillPoly(img2, pts=[contours_only_text_parent_d[np.argmin(dists)]], color=i + 1)
|
# cv2.fillPoly(img2, pts=[contours_only_text_parent_d[np.argmin(dists)]], color=i + 1)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue