mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-31 01:34:17 +01:00 
			
		
		
		
	dilation of textregions and marginals are accomplished
This commit is contained in:
		
							parent
							
								
									95effe54a0
								
							
						
					
					
						commit
						133091137d
					
				
					 1 changed files with 313 additions and 139 deletions
				
			
		|  | @ -252,7 +252,7 @@ class Eynollah: | |||
|         self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425" | ||||
|         self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314" | ||||
|         self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based" | ||||
|         self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige" | ||||
|         self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige" | ||||
|         ##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans" | ||||
|         self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans" | ||||
|         if self.textline_light: | ||||
|  | @ -1050,7 +1050,7 @@ class Eynollah: | |||
|         #del model | ||||
|         #gc.collect() | ||||
|         return prediction_true | ||||
|     def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_percent=0.1): | ||||
|     def do_prediction_new_concept(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False, thresholding_for_artificial_class_in_light_version=False): | ||||
|         self.logger.debug("enter do_prediction") | ||||
| 
 | ||||
|         img_height_model = model.layers[len(model.layers) - 1].output_shape[1] | ||||
|  | @ -1064,14 +1064,14 @@ class Eynollah: | |||
| 
 | ||||
|             label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0) | ||||
|              | ||||
|             seg_not_base = label_p_pred[0,:,:,4] | ||||
|             #seg_not_base = label_p_pred[0,:,:,4] | ||||
|              | ||||
|             seg_not_base[seg_not_base>0.4] =1 | ||||
|             seg_not_base[seg_not_base<1] =0 | ||||
|             #seg_not_base[seg_not_base>0.4] =1 | ||||
|             #seg_not_base[seg_not_base<1] =0 | ||||
| 
 | ||||
|             seg = np.argmax(label_p_pred, axis=3)[0] | ||||
|              | ||||
|             seg[seg_not_base==1]=4 | ||||
|             #seg[seg_not_base==1]=4 | ||||
|              | ||||
|             seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
|             prediction_true = resize_image(seg_color, img_h_page, img_w_page) | ||||
|  | @ -1099,6 +1099,16 @@ class Eynollah: | |||
|             nyf = img_h / float(height_mid) | ||||
|             nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) | ||||
|             nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) | ||||
|              | ||||
|             list_i_s = [] | ||||
|             list_j_s = [] | ||||
|             list_x_u = [] | ||||
|             list_x_d = [] | ||||
|             list_y_u = [] | ||||
|             list_y_d = [] | ||||
|              | ||||
|             batch_indexer = 0 | ||||
|             img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) | ||||
| 
 | ||||
|             for i in range(nxf): | ||||
|                 for j in range(nyf): | ||||
|  | @ -1120,44 +1130,57 @@ class Eynollah: | |||
|                     if index_y_u > img_h: | ||||
|                         index_y_u = img_h | ||||
|                         index_y_d = img_h - img_height_model | ||||
|                          | ||||
|                          | ||||
|                     list_i_s.append(i) | ||||
|                     list_j_s.append(j) | ||||
|                     list_x_u.append(index_x_u) | ||||
|                     list_x_d.append(index_x_d) | ||||
|                     list_y_d.append(index_y_d) | ||||
|                     list_y_u.append(index_y_u) | ||||
|                      | ||||
| 
 | ||||
|                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
|                     label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), | ||||
|                                                  verbose=0) | ||||
|                     seg = np.argmax(label_p_pred, axis=3)[0] | ||||
|                     img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
|                      | ||||
|                     batch_indexer = batch_indexer + 1 | ||||
| 
 | ||||
|                     #img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||
|                     #label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), | ||||
|                                                  #verbose=0) | ||||
|                     #seg = np.argmax(label_p_pred, axis=3)[0] | ||||
|                      | ||||
|                      | ||||
|                     seg_not_base = label_p_pred[0,:,:,4] | ||||
|                     ##seg2 = -label_p_pred[0,:,:,2] | ||||
|                     ######seg_not_base = label_p_pred[0,:,:,4] | ||||
|                     ########seg2 = -label_p_pred[0,:,:,2] | ||||
|                      | ||||
|                      | ||||
|                     seg_not_base[seg_not_base>0.03] =1 | ||||
|                     seg_not_base[seg_not_base<1] =0 | ||||
|                     ######seg_not_base[seg_not_base>0.03] =1 | ||||
|                     ######seg_not_base[seg_not_base<1] =0 | ||||
|                      | ||||
|                      | ||||
|                      | ||||
|                     seg_test = label_p_pred[0,:,:,1] | ||||
|                     ##seg2 = -label_p_pred[0,:,:,2] | ||||
|                     ######seg_test = label_p_pred[0,:,:,1] | ||||
|                     ########seg2 = -label_p_pred[0,:,:,2] | ||||
|                      | ||||
|                      | ||||
|                     seg_test[seg_test>0.75] =1 | ||||
|                     seg_test[seg_test<1] =0 | ||||
|                     ######seg_test[seg_test>0.75] =1 | ||||
|                     ######seg_test[seg_test<1] =0 | ||||
|                      | ||||
|                      | ||||
|                     seg_line = label_p_pred[0,:,:,3] | ||||
|                     ##seg2 = -label_p_pred[0,:,:,2] | ||||
|                     ######seg_line = label_p_pred[0,:,:,3] | ||||
|                     ########seg2 = -label_p_pred[0,:,:,2] | ||||
|                      | ||||
|                      | ||||
|                     seg_line[seg_line>0.1] =1 | ||||
|                     seg_line[seg_line<1] =0 | ||||
|                     ######seg_line[seg_line>0.1] =1 | ||||
|                     ######seg_line[seg_line<1] =0 | ||||
|                      | ||||
|                      | ||||
|                     seg_background = label_p_pred[0,:,:,0] | ||||
|                     ##seg2 = -label_p_pred[0,:,:,2] | ||||
|                     ######seg_background = label_p_pred[0,:,:,0] | ||||
|                     ########seg2 = -label_p_pred[0,:,:,2] | ||||
|                      | ||||
|                      | ||||
|                     seg_background[seg_background>0.25] =1 | ||||
|                     seg_background[seg_background<1] =0 | ||||
|                     ######seg_background[seg_background>0.25] =1 | ||||
|                     ######seg_background[seg_background<1] =0 | ||||
|                     ##seg = seg+seg2 | ||||
|                     #seg = label_p_pred[0,:,:,2] | ||||
|                     #seg[seg>0.4] =1 | ||||
|  | @ -1170,56 +1193,221 @@ class Eynollah: | |||
|                     ##plt.show() | ||||
|                     #seg[seg==1]=0 | ||||
|                     #seg[seg_test==1]=1 | ||||
|                     seg[seg_not_base==1]=4 | ||||
|                     seg[seg_background==1]=0 | ||||
|                     seg[(seg_line==1) & (seg==0)]=3 | ||||
|                     seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
|                     ######seg[seg_not_base==1]=4 | ||||
|                     ######seg[seg_background==1]=0 | ||||
|                     ######seg[(seg_line==1) & (seg==0)]=3 | ||||
|                     #seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                     if i == 0 and j == 0: | ||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     elif i == nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] | ||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     elif i == 0 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     elif i == nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     elif i == 0 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     elif i != 0 and i != nxf - 1 and j == 0: | ||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                     else: | ||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                     #if i == 0 and j == 0: | ||||
|                         #seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     #elif i == nxf - 1 and j == nyf - 1: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     #elif i == 0 and j == nyf - 1: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     #elif i == nxf - 1 and j == 0: | ||||
|                         #seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                         #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||
|                         #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         #prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     #elif i == 0 and j != 0 and j != nyf - 1: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||
|                     #elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||
|                     #elif i != 0 and i != nxf - 1 and j == 0: | ||||
|                         #seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                     #elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                     #else: | ||||
|                         #seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                         #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||
|                         #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||
|                         #prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||
|                          | ||||
|                          | ||||
|                     if batch_indexer == n_batch_inference: | ||||
|                         label_p_pred = model.predict(img_patch,verbose=0) | ||||
|                          | ||||
|                         seg = np.argmax(label_p_pred, axis=3) | ||||
|                          | ||||
|                         if thresholding_for_some_classes_in_light_version: | ||||
|                             seg_not_base = label_p_pred[:,:,:,4] | ||||
|                             seg_not_base[seg_not_base>0.03] =1 | ||||
|                             seg_not_base[seg_not_base<1] =0 | ||||
|                              | ||||
|                             seg_line = label_p_pred[:,:,:,3] | ||||
|                             seg_line[seg_line>0.1] =1 | ||||
|                             seg_line[seg_line<1] =0 | ||||
|                              | ||||
|                             seg_background = label_p_pred[:,:,:,0] | ||||
|                             seg_background[seg_background>0.25] =1 | ||||
|                             seg_background[seg_background<1] =0 | ||||
|                              | ||||
|                             seg[seg_not_base==1]=4 | ||||
|                             seg[seg_background==1]=0 | ||||
|                             seg[(seg_line==1) & (seg==0)]=3 | ||||
|                         if thresholding_for_artificial_class_in_light_version: | ||||
|                             seg_art = label_p_pred[:,:,:,2] | ||||
|                              | ||||
|                             seg_art[seg_art<0.2] = 0 | ||||
|                             seg_art[seg_art>0] =1 | ||||
|                              | ||||
|                             seg[seg_art==1]=2 | ||||
|                          | ||||
|                         indexer_inside_batch = 0 | ||||
|                         for i_batch, j_batch in zip(list_i_s, list_j_s): | ||||
|                             seg_in = seg[indexer_inside_batch,:,:] | ||||
|                             seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) | ||||
|                              | ||||
|                             index_y_u_in = list_y_u[indexer_inside_batch] | ||||
|                             index_y_d_in = list_y_d[indexer_inside_batch] | ||||
|                              | ||||
|                             index_x_u_in = list_x_u[indexer_inside_batch] | ||||
|                             index_x_d_in = list_x_d[indexer_inside_batch] | ||||
|                              | ||||
|                             if i_batch == 0 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch == 0 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                             else: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                                  | ||||
|                             indexer_inside_batch = indexer_inside_batch +1 | ||||
|                                  | ||||
|                          | ||||
|                         list_i_s = [] | ||||
|                         list_j_s = [] | ||||
|                         list_x_u = [] | ||||
|                         list_x_d = [] | ||||
|                         list_y_u = [] | ||||
|                         list_y_d = [] | ||||
|                          | ||||
|                         batch_indexer = 0 | ||||
|                          | ||||
|                         img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) | ||||
|                          | ||||
|                     elif i==(nxf-1) and j==(nyf-1): | ||||
|                         label_p_pred = model.predict(img_patch,verbose=0) | ||||
|                          | ||||
|                         seg = np.argmax(label_p_pred, axis=3) | ||||
|                         if thresholding_for_some_classes_in_light_version: | ||||
|                             seg_not_base = label_p_pred[:,:,:,4] | ||||
|                             seg_not_base[seg_not_base>0.03] =1 | ||||
|                             seg_not_base[seg_not_base<1] =0 | ||||
|                              | ||||
|                             seg_line = label_p_pred[:,:,:,3] | ||||
|                             seg_line[seg_line>0.1] =1 | ||||
|                             seg_line[seg_line<1] =0 | ||||
|                              | ||||
|                             seg_background = label_p_pred[:,:,:,0] | ||||
|                             seg_background[seg_background>0.25] =1 | ||||
|                             seg_background[seg_background<1] =0 | ||||
|                              | ||||
|                             seg[seg_not_base==1]=4 | ||||
|                             seg[seg_background==1]=0 | ||||
|                             seg[(seg_line==1) & (seg==0)]=3 | ||||
|                              | ||||
|                         if thresholding_for_artificial_class_in_light_version: | ||||
|                             seg_art = label_p_pred[:,:,:,2] | ||||
|                              | ||||
|                             seg_art[seg_art<0.2] = 0 | ||||
|                             seg_art[seg_art>0] =1 | ||||
|                              | ||||
|                             seg[seg_art==1]=2 | ||||
|                          | ||||
|                         indexer_inside_batch = 0 | ||||
|                         for i_batch, j_batch in zip(list_i_s, list_j_s): | ||||
|                             seg_in = seg[indexer_inside_batch,:,:] | ||||
|                             seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) | ||||
|                              | ||||
|                             index_y_u_in = list_y_u[indexer_inside_batch] | ||||
|                             index_y_d_in = list_y_d[indexer_inside_batch] | ||||
|                              | ||||
|                             index_x_u_in = list_x_u[indexer_inside_batch] | ||||
|                             index_x_d_in = list_x_d[indexer_inside_batch] | ||||
|                              | ||||
|                             if i_batch == 0 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch == 0 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color | ||||
|                             elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: | ||||
|                                 seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                             elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                             else: | ||||
|                                 seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||
|                                 prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color | ||||
|                                  | ||||
|                             indexer_inside_batch = indexer_inside_batch +1 | ||||
|                                  | ||||
|                          | ||||
|                         list_i_s = [] | ||||
|                         list_j_s = [] | ||||
|                         list_x_u = [] | ||||
|                         list_x_d = [] | ||||
|                         list_y_u = [] | ||||
|                         list_y_d = [] | ||||
|                          | ||||
|                         batch_indexer = 0 | ||||
|                          | ||||
|                         img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) | ||||
| 
 | ||||
|             prediction_true = prediction_true.astype(np.uint8) | ||||
|         return prediction_true | ||||
|  | @ -1963,7 +2151,7 @@ class Eynollah: | |||
|         #print(num_col_classifier,'num_col_classifier') | ||||
|          | ||||
|         if num_col_classifier == 1: | ||||
|             img_w_new = 800#1000 | ||||
|             img_w_new = 1000 | ||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|              | ||||
|         elif num_col_classifier == 2: | ||||
|  | @ -1971,17 +2159,17 @@ class Eynollah: | |||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|              | ||||
|         elif num_col_classifier == 3: | ||||
|             img_w_new = 1600#2000 | ||||
|             img_w_new = 2000 | ||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|              | ||||
|         elif num_col_classifier == 4: | ||||
|             img_w_new = 1900#2500 | ||||
|             img_w_new = 2500 | ||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|         elif num_col_classifier == 5: | ||||
|             img_w_new = 2300#3000 | ||||
|             img_w_new = 3000 | ||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|         else: | ||||
|             img_w_new = 3000#4000 | ||||
|             img_w_new = 4000 | ||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|         img_resized = resize_image(img,img_h_new, img_w_new ) | ||||
|          | ||||
|  | @ -2025,17 +2213,17 @@ class Eynollah: | |||
|             if not self.dir_in: | ||||
|                 if num_col_classifier == 1 or num_col_classifier == 2: | ||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np) | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(False, img_resized, model_region) | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(False, img_resized, model_region, n_batch_inference=1) | ||||
|                 else: | ||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) | ||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light, n_batch_inference=3) | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region) | ||||
|                 ##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) | ||||
|                 ##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True) | ||||
|             else: | ||||
|                 if num_col_classifier == 1 or num_col_classifier == 2: | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(False, img_resized, self.model_region_1_2) | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(False, img_resized, self.model_region_1_2, n_batch_inference=1) | ||||
|                 else: | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region) | ||||
|                     prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region, n_batch_inference=3) | ||||
|                 ###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True) | ||||
|              | ||||
|             #print("inside 3 ", time.time()-t_in) | ||||
|  | @ -2054,8 +2242,12 @@ class Eynollah: | |||
|              | ||||
|             mask_texts_only = mask_texts_only.astype('uint8') | ||||
|              | ||||
|             #mask_texts_only = cv2.erode(mask_texts_only, KERNEL, iterations=1) | ||||
|             mask_texts_only = cv2.dilate(mask_texts_only, KERNEL, iterations=1) | ||||
|             ##if num_col_classifier == 1 or num_col_classifier == 2: | ||||
|                 ###mask_texts_only = cv2.erode(mask_texts_only, KERNEL, iterations=1) | ||||
|                 ##mask_texts_only = cv2.dilate(mask_texts_only, KERNEL, iterations=1) | ||||
|              | ||||
|             mask_texts_only = cv2.dilate(mask_texts_only, kernel=np.ones((2,2), np.uint8), iterations=1) | ||||
|              | ||||
|              | ||||
|             mask_images_only=(prediction_regions_org[:,:] ==2)*1 | ||||
|              | ||||
|  | @ -3150,7 +3342,14 @@ class Eynollah: | |||
| 
 | ||||
|         pixel_img = 4 | ||||
|         min_area_mar = 0.00001 | ||||
|         polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|         if self.light_version: | ||||
|             marginal_mask = (text_regions_p[:,:]==pixel_img)*1 | ||||
|             marginal_mask = marginal_mask.astype('uint8') | ||||
|             marginal_mask = cv2.dilate(marginal_mask, KERNEL, iterations=2) | ||||
|              | ||||
|             polygons_of_marginals = return_contours_of_interested_region(marginal_mask, 1, min_area_mar) | ||||
|         else: | ||||
|             polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|          | ||||
|         pixel_img = 10 | ||||
|         contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|  | @ -3241,7 +3440,15 @@ class Eynollah: | |||
|              | ||||
|         pixel_img = 4 | ||||
|         min_area_mar = 0.00001 | ||||
|         polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|          | ||||
|         if self.light_version: | ||||
|             marginal_mask = (text_regions_p[:,:]==pixel_img)*1 | ||||
|             marginal_mask = marginal_mask.astype('uint8') | ||||
|             marginal_mask = cv2.dilate(marginal_mask, KERNEL, iterations=2) | ||||
|              | ||||
|             polygons_of_marginals = return_contours_of_interested_region(marginal_mask, 1, min_area_mar) | ||||
|         else: | ||||
|             polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|          | ||||
|         pixel_img = 10 | ||||
|         contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||
|  | @ -3850,18 +4057,19 @@ class Eynollah: | |||
|         for j in range(len(all_found_textline_polygons)): | ||||
|              | ||||
|             con_ind = all_found_textline_polygons[j] | ||||
|             #print(len(con_ind[:,0,0]),'con_ind[:,0,0]') | ||||
|             area = cv2.contourArea(con_ind) | ||||
|             con_ind = con_ind.astype(np.float) | ||||
|              | ||||
|             con_ind[:,0,0] = gaussian_filter1d(con_ind[:,0,0], 0.1) | ||||
|             con_ind[:,0,1] = gaussian_filter1d(con_ind[:,0,1], 0.1) | ||||
|             #con_ind[:,0,0] = gaussian_filter1d(con_ind[:,0,0], 0.5) | ||||
|             #con_ind[:,0,1] = gaussian_filter1d(con_ind[:,0,1], 0.5) | ||||
|              | ||||
|             x_differential = np.diff( con_ind[:,0,0]) | ||||
|             y_differential = np.diff( con_ind[:,0,1]) | ||||
|              | ||||
|              | ||||
|             x_differential = gaussian_filter1d(x_differential, .5) | ||||
|             y_differential = gaussian_filter1d(y_differential, .5) | ||||
|             x_differential = gaussian_filter1d(x_differential, 0.1) | ||||
|             y_differential = gaussian_filter1d(y_differential, 0.1) | ||||
|              | ||||
|             x_min = float(np.min( con_ind[:,0,0] )) | ||||
|             y_min = float(np.min( con_ind[:,0,1] )) | ||||
|  | @ -3885,8 +4093,8 @@ class Eynollah: | |||
|                  | ||||
|             if dilation_m1>8: | ||||
|                 dilation_m1 = 8 | ||||
|             if dilation_m1<5: | ||||
|                 dilation_m1 = 5 | ||||
|             if dilation_m1<6: | ||||
|                 dilation_m1 = 6 | ||||
|             #print(dilation_m1, 'dilation_m1') | ||||
|             dilation_m2 = int(dilation_m1/2.) +1  | ||||
|              | ||||
|  | @ -4002,7 +4210,6 @@ class Eynollah: | |||
|             #indices_m2 = np.array(indices_m2)[diff_neg_pos>1] | ||||
|              | ||||
|             for ii in range(len(indices_2)): | ||||
|                  | ||||
|                 #x_inner = con_ind[indices_2[ii]+1:indices_m2[ii]+1,0, 0] | ||||
|                 #y_inner = con_ind[indices_2[ii]+1:indices_m2[ii]+1,0, 1] | ||||
|                  | ||||
|  | @ -4030,11 +4237,12 @@ class Eynollah: | |||
|             #print(indices_m2,'-2') | ||||
|             #print(diff_neg_pos,'diff_neg_pos') | ||||
|              | ||||
|             #con_scaled[:,0, 1] = gaussian_filter1d(con_scaled[:,0, 1], 0.1) | ||||
|             #con_scaled[:,0, 0] = gaussian_filter1d(con_scaled[:,0, 0], 0.1) | ||||
|             ##con_scaled[:,0, 1] = gaussian_filter1d(con_scaled[:,0, 1], 0.1) | ||||
|             ##con_scaled[:,0, 0] = gaussian_filter1d(con_scaled[:,0, 0], 0.1) | ||||
|              | ||||
|             con_scaled[-1,0, 1] = con_scaled[0,0, 1] | ||||
|             con_scaled[-1,0, 0] = con_scaled[0,0, 0] | ||||
|             #con_scaled[-1,0, 1] = con_scaled[0,0, 1] | ||||
|             #con_scaled[-1,0, 0] = con_scaled[0,0, 0] | ||||
|             ##print(len(con_scaled[:,0,0]),'con_scaled[:,0,0]') | ||||
|             all_found_textline_polygons[j][:,0,1] = con_scaled[:,0, 1] | ||||
|             all_found_textline_polygons[j][:,0,0] = con_scaled[:,0, 0] | ||||
|         return all_found_textline_polygons | ||||
|  | @ -4045,7 +4253,7 @@ class Eynollah: | |||
|             for ij in range(len(all_found_textline_polygons[j])): | ||||
|              | ||||
|                 con_ind = all_found_textline_polygons[j][ij] | ||||
|                  | ||||
|                 print(len(con_ind[:,0,0]),'con_ind[:,0,0]') | ||||
|                 area = cv2.contourArea(con_ind) | ||||
|                  | ||||
|                 con_ind = con_ind.astype(np.float) | ||||
|  | @ -4069,31 +4277,6 @@ class Eynollah: | |||
|                  | ||||
|                 inc_x = np.zeros(len(x_differential)+1) | ||||
|                 inc_y = np.zeros(len(x_differential)+1) | ||||
|                  | ||||
|                  | ||||
|                 #print(y_max-y_min, x_max-x_min,(y_max-y_min)/(x_max-x_min), (x_max-x_min)/(y_max-y_min) ) | ||||
|                 #print(area / (x_max-x_min)) | ||||
|                 ##if (y_max-y_min)<40: | ||||
|                     ##dilation_m1 = 5 | ||||
|                     ##dilation_m2 = int(dilation_m1/2.) +1  | ||||
|                 ##else: | ||||
|                     ##dilation_m1 = 12 | ||||
|                     ##dilation_m2 = int(dilation_m1/2.) +1  | ||||
|                  | ||||
|                 #########if (y_max-y_min) <= (x_max-x_min) and ((y_max-y_min)/(x_max-x_min))<0.15 and (x_max-x_min)>50: | ||||
|                     #########dilation_m1 = int( (y_max-y_min) * 5/20.0 ) | ||||
|                 #########elif (y_max-y_min) <= (x_max-x_min) and ((y_max-y_min)/(x_max-x_min))>=0.15 and ((y_max-y_min)/(x_max-x_min))<0.3 and (x_max-x_min)>50: | ||||
|                     #########dilation_m1 = int( (y_max-y_min) * 2/20.0 ) | ||||
|                 #########elif (y_max-y_min) <= (x_max-x_min) and ((y_max-y_min)/(x_max-x_min))>=0.3 and (x_max-x_min)>50: | ||||
|                     #########dilation_m1 = int( (y_max-y_min) * 1/20.0 ) | ||||
|                 #########elif (x_max-x_min) < (y_max-y_min) and ((x_max-x_min)/(y_max-y_min))<0.15 and (y_max-y_min)>50: | ||||
|                     #########dilation_m1 = int( (x_max-x_min) * 5/20.0 ) | ||||
|                 #########elif (x_max-x_min) < (y_max-y_min) and ((x_max-x_min)/(y_max-y_min))>=0.15 and ((x_max-x_min)/(y_max-y_min))<0.3 and (y_max-y_min)>50: | ||||
|                     #########dilation_m1 = int( (x_max-x_min) * 2/20.0 ) | ||||
|                 #########elif (x_max-x_min) < (y_max-y_min) and ((x_max-x_min)/(y_max-y_min))>=0.3 and (y_max-y_min)>50: | ||||
|                     #########dilation_m1 = int( (x_max-x_min) * 1/20.0 ) | ||||
|                 #########else: | ||||
|                     #########dilation_m1 = int( (y_max-y_min) * 4/20.0 ) | ||||
|                      | ||||
|                 if (y_max-y_min) <= (x_max-x_min): | ||||
|                     dilation_m1 = round(area / (x_max-x_min) * 0.35) | ||||
|  | @ -4126,11 +4309,6 @@ class Eynollah: | |||
|                         inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) | ||||
|                         inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) | ||||
|                          | ||||
|                 ###inc_x =list(inc_x) | ||||
|                 ###inc_x.append(inc_x[0]) | ||||
|                  | ||||
|                 ###inc_y =list(inc_y) | ||||
|                 ###inc_y.append(inc_y[0]) | ||||
|                  | ||||
|                 inc_x[0] = inc_x[-1] | ||||
|                 inc_y[0] = inc_y[-1] | ||||
|  | @ -4146,11 +4324,6 @@ class Eynollah: | |||
|                 all_found_textline_polygons[j][ij][:,0,1] = con_scaled[:,0, 1] | ||||
|                 all_found_textline_polygons[j][ij][:,0,0] = con_scaled[:,0, 0] | ||||
|         return all_found_textline_polygons | ||||
|                      | ||||
|                      | ||||
|                      | ||||
|                  | ||||
|                  | ||||
|      | ||||
|     def dilate_textlines(self,all_found_textline_polygons): | ||||
|         for j in range(len(all_found_textline_polygons)): | ||||
|  | @ -4403,12 +4576,12 @@ class Eynollah: | |||
|                 t1 = time.time() | ||||
|                 if not self.full_layout: | ||||
|                     polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts) | ||||
|                     polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) | ||||
|                     ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) | ||||
|                 if self.full_layout: | ||||
|                     if not self.light_version: | ||||
|                         img_bin_light = None | ||||
|                     polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts, img_bin_light) | ||||
|                     polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) | ||||
|                     ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) | ||||
|                 text_only = ((img_revised_tab[:, :] == 1)) * 1 | ||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                     text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 | ||||
|  | @ -4537,9 +4710,10 @@ class Eynollah: | |||
|                      | ||||
|                 #print("text region early 3 in %.1fs", time.time() - t0) | ||||
|                 if self.light_version: | ||||
|                     txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) | ||||
|                     txt_con_org = self.dilate_textregions_contours(txt_con_org) | ||||
|                     contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) | ||||
|                     txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) | ||||
|                     #txt_con_org = self.dilate_textregions_contours(txt_con_org) | ||||
|                     #contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) | ||||
|                 else: | ||||
|                     txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) | ||||
|                 #print("text region early 4 in %.1fs", time.time() - t0) | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue