training: extend index_start to tasks classification and RO

This commit is contained in:
Robert Sachunsky 2026-02-04 17:35:12 +01:00
parent e85003db4a
commit 1581094141

View file

@ -423,6 +423,10 @@ def run(_config,
#model.save(dir_output+'/'+'model'+'.h5')
elif task=='classification':
if continue_training:
model = load_model(dir_of_start_model, compile=False)
else:
index_start = 0
model = resnet50_classifier(n_classes,
input_height,
input_width,
@ -453,7 +457,8 @@ def run(_config,
verbose=1,
epochs=n_epochs,
metrics=[F1Score(average='macro', name='f1')],
callbacks=callbacks)
callbacks=callbacks,
initial_epoch=index_start)
usable_checkpoints = np.flatnonzero(np.array(history['val_f1']) > f1_threshold_classification)
if len(usable_checkpoints) >= 1:
@ -481,8 +486,15 @@ def run(_config,
_log.info("ensemble model saved under '%s'", cp_path)
elif task=='reading_order':
model = machine_based_reading_order_model(
n_classes, input_height, input_width, weight_decay, pretraining)
if continue_training:
model = load_model(dir_of_start_model, compile=False)
else:
index_start = 0
model = machine_based_reading_order_model(n_classes,
input_height,
input_width,
weight_decay,
pretraining)
dir_flow_train_imgs = os.path.join(dir_train, 'images')
dir_flow_train_labels = os.path.join(dir_train, 'labels')
@ -495,7 +507,6 @@ def run(_config,
#ls_test = os.listdir(dir_flow_train_labels)
#f1score_tot = [0]
indexer_start = 0
model.compile(loss="binary_crossentropy",
#optimizer=SGD(learning_rate=0.01, momentum=0.9),
optimizer=Adam(learning_rate=0.0001), # rs: why not learning_rate?
@ -515,7 +526,8 @@ def run(_config,
steps_per_epoch=num_rows / n_batch,
verbose=1,
epochs=n_epochs,
callbacks=callbacks)
callbacks=callbacks,
initial_epoch=index_start)
'''
if f1score>f1score_tot[0]:
f1score_tot[0] = f1score