|
|
|
@ -178,6 +178,8 @@ class Eynollah:
|
|
|
|
|
ignore_page_extraction=False,
|
|
|
|
|
reading_order_machine_based=False,
|
|
|
|
|
do_ocr=False,
|
|
|
|
|
num_col_upper=None,
|
|
|
|
|
num_col_lower=None,
|
|
|
|
|
override_dpi=None,
|
|
|
|
|
logger=None,
|
|
|
|
|
pcgts=None,
|
|
|
|
@ -212,6 +214,14 @@ class Eynollah:
|
|
|
|
|
self.headers_off = headers_off
|
|
|
|
|
self.ignore_page_extraction = ignore_page_extraction
|
|
|
|
|
self.ocr = do_ocr
|
|
|
|
|
if num_col_upper:
|
|
|
|
|
self.num_col_upper = int(num_col_upper)
|
|
|
|
|
else:
|
|
|
|
|
self.num_col_upper = num_col_upper
|
|
|
|
|
if num_col_lower:
|
|
|
|
|
self.num_col_lower = int(num_col_lower)
|
|
|
|
|
else:
|
|
|
|
|
self.num_col_lower = num_col_lower
|
|
|
|
|
self.pcgts = pcgts
|
|
|
|
|
if not dir_in:
|
|
|
|
|
self.plotter = None if not enable_plotting else EynollahPlotter(
|
|
|
|
@ -598,35 +608,79 @@ class Eynollah:
|
|
|
|
|
img = self.imread()
|
|
|
|
|
img_bin = None
|
|
|
|
|
|
|
|
|
|
width_early = img.shape[1]
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
_, page_coord = self.early_page_for_num_of_column_classification(img_bin)
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
|
|
|
|
|
|
if self.input_binary:
|
|
|
|
|
img_in = np.copy(img)
|
|
|
|
|
width_early = img_in.shape[1]
|
|
|
|
|
img_in = img_in / 255.0
|
|
|
|
|
img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = img_in.reshape(1, 448, 448, 3)
|
|
|
|
|
else:
|
|
|
|
|
img_1ch = self.imread(grayscale=True)
|
|
|
|
|
width_early = img_1ch.shape[1]
|
|
|
|
|
img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
|
|
|
|
if self.num_col_upper and not self.num_col_lower:
|
|
|
|
|
num_col = self.num_col_upper
|
|
|
|
|
label_p_pred = [np.ones(6)]
|
|
|
|
|
elif self.num_col_lower and not self.num_col_upper:
|
|
|
|
|
num_col = self.num_col_lower
|
|
|
|
|
label_p_pred = [np.ones(6)]
|
|
|
|
|
|
|
|
|
|
img_1ch = img_1ch / 255.0
|
|
|
|
|
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
|
|
|
|
img_in[0, :, :, 0] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 1] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 2] = img_1ch[:, :]
|
|
|
|
|
elif (not self.num_col_upper and not self.num_col_lower):
|
|
|
|
|
if self.input_binary:
|
|
|
|
|
img_in = np.copy(img)
|
|
|
|
|
img_in = img_in / 255.0
|
|
|
|
|
img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = img_in.reshape(1, 448, 448, 3)
|
|
|
|
|
else:
|
|
|
|
|
img_1ch = self.imread(grayscale=True)
|
|
|
|
|
width_early = img_1ch.shape[1]
|
|
|
|
|
img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
|
|
|
|
|
|
|
|
|
img_1ch = img_1ch / 255.0
|
|
|
|
|
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
|
|
|
|
img_in[0, :, :, 0] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 1] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 2] = img_1ch[:, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
|
label_p_pred = self.model_classifier.predict(img_in, verbose=0)
|
|
|
|
|
else:
|
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in, verbose=0)
|
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
|
elif (self.num_col_upper and self.num_col_lower) and (self.num_col_upper!=self.num_col_lower):
|
|
|
|
|
if self.input_binary:
|
|
|
|
|
img_in = np.copy(img)
|
|
|
|
|
img_in = img_in / 255.0
|
|
|
|
|
img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = img_in.reshape(1, 448, 448, 3)
|
|
|
|
|
else:
|
|
|
|
|
img_1ch = self.imread(grayscale=True)
|
|
|
|
|
width_early = img_1ch.shape[1]
|
|
|
|
|
img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
|
|
|
|
|
|
|
|
|
img_1ch = img_1ch / 255.0
|
|
|
|
|
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
|
|
|
|
img_in[0, :, :, 0] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 1] = img_1ch[:, :]
|
|
|
|
|
img_in[0, :, :, 2] = img_1ch[:, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
|
label_p_pred = self.model_classifier.predict(img_in, verbose=0)
|
|
|
|
|
else:
|
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in, verbose=0)
|
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
|
|
|
|
|
|
if num_col > self.num_col_upper:
|
|
|
|
|
num_col = self.num_col_upper
|
|
|
|
|
label_p_pred = [np.ones(6)]
|
|
|
|
|
if num_col < self.num_col_lower:
|
|
|
|
|
num_col = self.num_col_lower
|
|
|
|
|
label_p_pred = [np.ones(6)]
|
|
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
|
label_p_pred = self.model_classifier.predict(img_in, verbose=0)
|
|
|
|
|
else:
|
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in, verbose=0)
|
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
|
num_col = self.num_col_upper
|
|
|
|
|
label_p_pred = [np.ones(6)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
|
|
|
|
|
|
|
|
|
|