Merge pull request #23 from qurator-spk/cneud-spelling

Fix spelling issues
pull/28/head
vahidrezanezhad 4 years ago committed by GitHub
commit 1ee219b657
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -25,30 +25,30 @@ The tool uses a combination of various models and heuristics (see flowchart belo
* [Scale classification](https://github.com/qurator-spk/eynollah#Scale_classification)
* [Heuristic methods](https://https://github.com/qurator-spk/eynollah#heuristic-methods)
The first three stages are based on [pixelwise segmentation](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
The first three stages are based on [pixel-wise segmentation](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
![](https://user-images.githubusercontent.com/952378/100619946-1936f680-331e-11eb-9297-6e8b4cab3c16.png)
## Border detection
For the purpose of text recognition (OCR) and in order to avoid noise being introduced from texts outside the printspace, one first needs to detect the border of the printed frame. This is done by a binary pixelwise-segmentation model trained on a dataset of 2,000 documents where about 1,200 of them come from the [dhSegment](https://github.com/dhlab-epfl/dhSegment/) project (you can download the dataset from [here](https://github.com/dhlab-epfl/dhSegment/releases/download/v0.2/pages.zip)) and the remainder having been annotated in SBB. For border detection, the model needs to be fed with the whole image at once rather than separated in patches.
For the purpose of text recognition (OCR) and in order to avoid noise being introduced from texts outside the printspace, one first needs to detect the border of the printed frame. This is done by a binary pixel-wise-segmentation model trained on a dataset of 2,000 documents where about 1,200 of them come from the [dhSegment](https://github.com/dhlab-epfl/dhSegment/) project (you can download the dataset from [here](https://github.com/dhlab-epfl/dhSegment/releases/download/v0.2/pages.zip)) and the remainder having been annotated in SBB. For border detection, the model needs to be fed with the whole image at once rather than separated in patches.
## Layout detection
As a next step, text regions need to be identified by means of layout detection. Again a pixelwise segmentation model was trained on 131 labeled images from the SBB digital collections, including some data augmentation. Since the target of this tool are historical documents, we consider as main region types text regions, separators, images, tables and background - each with their own subclasses, e.g. in the case of text regions, subclasses like header/heading, drop capital, main body text etc. While it would be desirable to detect and classify each of these classes in a granular way, there are also limitations due to having a suitably large and balanced training set. Accordingly, the current version of this tool is focussed on the main region types background, text region, image and separator.
As a next step, text regions need to be identified by means of layout detection. Again a pixel-wise segmentation model was trained on 131 labeled images from the SBB digital collections, including some data augmentation. Since the target of this tool are historical documents, we consider as main region types text regions, separators, images, tables and background - each with their own subclasses, e.g. in the case of text regions, subclasses like header/heading, drop capital, main body text etc. While it would be desirable to detect and classify each of these classes in a granular way, there are also limitations due to having a suitably large and balanced training set. Accordingly, the current version of this tool is focussed on the main region types background, text region, image and separator.
## Textline detection
In a subsequent step, binary pixelwise segmentation is used again to classify pixels in a document that constitute textlines. For textline segmentation, a model was initially trained on documents with only one column/block of text and some augmentation with regards to scaling. By fine-tuning the parameters also for multi-column documents, additional training data was produced that resulted in a much more robust textline detection model.
In a subsequent step, binary pixel-wise segmentation is used again to classify pixels in a document that constitute textlines. For textline segmentation, a model was initially trained on documents with only one column/block of text and some augmentation with regard to scaling. By fine-tuning the parameters also for multi-column documents, additional training data was produced that resulted in a much more robust textline detection model.
## Image enhancement
This is an image to image model which input was low quality of an image and label was actually the original image. For this one we did not have any GT so we decreased the quality of documents in SBB and then feed them into model.
This is an image to image model which input was low quality of an image and label was actually the original image. For this one we did not have any GT, so we decreased the quality of documents in SBB and then feed them into model.
## Scale classification
This is simply an image classifier which classifies images based on their scales or better to say based on their number of columns.
## Heuristic methods
Some heuristic methods are also employed to further improve the model predictions:
* After border detection, the largest contour is determined by a bounding box and the image cropped to these coordinates.
* After border detection, the largest contour is determined by a bounding box, and the image cropped to these coordinates.
* For text region detection, the image is scaled up to make it easier for the model to detect background space between text regions.
* A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are actually noise can be filtered out.
* A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are noise can be filtered out.
* Deskewing is applied on the text region level (due to regions having different degrees of skew) in order to improve the textline segmentation result.
* After deskewing, a calculation of the pixel distribution on the X-axis allows the separation of textlines (foreground) and background pixels.
* Finally, using the derived coordinates, bounding boxes are determined for each textline.
@ -105,18 +105,18 @@ Here are the difference in elements detected depending on the `--full-layout`/`-
### How to use
First of all, this model makes use of up to 9 trained models which are responsible for different operations like size detection, column classification, image enhancement, page extraction, main layout detection, full layout detection and textline detection. But this does not mean that all 9 models are always required for every document. Based on the document characteristics and parameters specified, different scenarios can be applied.
First, this model makes use of up to 9 trained models which are responsible for different operations like size detection, column classification, image enhancement, page extraction, main layout detection, full layout detection and textline detection.That does not mean that all 9 models are always required for every document. Based on the document characteristics and parameters specified, different scenarios can be applied.
* If none of the parameters is set to `true`, the tool will perform a layout detection of main regions (background, text, images, separators and marginals). An advantage of this tool is that it tries to extract main text regions separately as much as possible.
* If you set `-ae` (**a**llow image **e**nhancement) parameter to `true`, the tool will first check the ppi (pixel-per-inch) of the image and when it is less than 300, the tool will resize it and only then image enhancement will occur. Image enhancement can also take place without this option, but by setting this option to `true`, the layout xml data (e.g. coordinates) will be based on the resized and enhanced image instead of the original image.
* For some documents, while the quality is good, their scale is extremly large and the performance of tool decreases. In such cases you can set `-as` (**a**llow **s**caling) to `true`. With this option enabled, the tool will try to rescale the image and only then the layout detection process will begin.
* For some documents, while the quality is good, their scale is very large, and the performance of tool decreases. In such cases you can set `-as` (**a**llow **s**caling) to `true`. With this option enabled, the tool will try to rescale the image and only then the layout detection process will begin.
* If you care about drop capitals (initials) and headings, you can set `-fl` (**f**ull **l**ayout) to `true`. With this setting, the tool can currently distinguish 7 document layout classes/elements.
* In cases where the document includes curved headers or curved lines, rectangular bounding boxes for textlines will not be a great option. In such cases it is strongly recommended to set the flag `-cl` (**c**urved **l**ines) to `true` to find countours of curved lines instead of rectangular boundinx boxes. Be advised that enabling this option increases the processing time of the tool.
* In cases where the document includes curved headers or curved lines, rectangular bounding boxes for textlines will not be a great option. In such cases it is strongly recommended setting the flag `-cl` (**c**urved **l**ines) to `true` to find contours of curved lines instead of rectangular bounding boxes. Be advised that enabling this option increases the processing time of the tool.
* To crop and save image regions inside the document, set the parameter `-si` (**s**ave **i**mages) to true and provide a directory path to store the extracted images.
* This tool is actively being developed. If problems occur or the performance does not meet your expectations, we welcome your feedback via [issues](https://github.com/qurator-spk/eynollah/issues).
* This tool is actively being developed. If problems occur, or the performance does not meet your expectations, we welcome your feedback via [issues](https://github.com/qurator-spk/eynollah/issues).

@ -32,7 +32,7 @@ warnings.filterwarnings("ignore")
from .utils.contour import (
filter_contours_area_of_image,
find_contours_mean_y_diff,
find_new_features_of_contoures,
find_new_features_of_contours,
get_text_region_boxes_by_given_contours,
get_textregion_contours_in_org_image,
return_contours_of_image,
@ -47,10 +47,10 @@ from .utils.rotate import (
rotation_not_90_func_full_layout)
from .utils.separate_lines import (
textline_contours_postprocessing,
seperate_lines_new2,
separate_lines_new2,
return_deskew_slop)
from .utils.drop_capitals import (
adhere_drop_capital_region_into_cprresponding_textline,
adhere_drop_capital_region_into_corresponding_textline,
filter_small_drop_capitals_from_no_patch_layout)
from .utils.marginals import get_marginals
from .utils.resize import resize_image
@ -119,7 +119,7 @@ class Eynollah:
self.logger = getLogger('eynollah')
self.dir_models = dir_models
self.model_dir_of_enhancemnet = dir_models + "/model_enhancement.h5"
self.model_dir_of_enhancement = dir_models + "/model_enhancement.h5"
self.model_dir_of_col_classifier = dir_models + "/model_scale_classifier.h5"
self.model_region_dir_p = dir_models + "/model_main_covid19_lr5-5_scale_1_1_great.h5"
self.model_region_dir_p2 = dir_models + "/model_main_home_corona3_rot.h5"
@ -149,7 +149,7 @@ class Eynollah:
def predict_enhancement(self, img):
self.logger.debug("enter predict_enhancement")
model_enhancement, _ = self.start_new_session_and_model(self.model_dir_of_enhancemnet)
model_enhancement, _ = self.start_new_session_and_model(self.model_dir_of_enhancement)
img_height_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[1]
img_width_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[2]
@ -816,7 +816,7 @@ class Eynollah:
all_box_coord_per_process = []
index_by_text_region_contours = []
textline_cnt_seperated = np.zeros(textline_mask_tot_ea.shape)
textline_cnt_separated = np.zeros(textline_mask_tot_ea.shape)
for mv in range(len(boxes_text)):
@ -833,8 +833,8 @@ class Eynollah:
slope_for_all = [slope_deskew][0]
else:
try:
textline_con, hierachy = return_contours_of_image(img_int_p)
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.0008)
textline_con, hierarchy = return_contours_of_image(img_int_p)
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.0008)
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
@ -868,19 +868,19 @@ class Eynollah:
textline_biggest_region = mask_biggest * textline_mask_tot_ea
# print(slope_for_all,'slope_for_all')
textline_rotated_seperated = seperate_lines_new2(textline_biggest_region[y : y + h, x : x + w], 0, num_col, slope_for_all, plotter=self.plotter)
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y : y + h, x : x + w], 0, num_col, slope_for_all, plotter=self.plotter)
# new line added
##print(np.shape(textline_rotated_seperated),np.shape(mask_biggest))
textline_rotated_seperated[mask_region_in_patch_region[:, :] != 1] = 0
##print(np.shape(textline_rotated_separated),np.shape(mask_biggest))
textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0
# till here
textline_cnt_seperated[y : y + h, x : x + w] = textline_rotated_seperated
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_seperated
textline_cnt_separated[y : y + h, x : x + w] = textline_rotated_separated
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated
# plt.imshow(textline_region_in_image)
# plt.show()
# plt.imshow(textline_cnt_seperated)
# plt.imshow(textline_cnt_separated)
# plt.show()
pixel_img = 1
@ -944,8 +944,8 @@ class Eynollah:
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv])
else:
try:
textline_con, hierachy = return_contours_of_image(img_int_p)
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.00008)
textline_con, hierarchy = return_contours_of_image(img_int_p)
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.00008)
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
sigma_des = int(y_diff_mean * (4.0 / 40.0))
if sigma_des < 1:
@ -1018,8 +1018,8 @@ class Eynollah:
crop_img = crop_img[:, :, 0]
crop_img = cv2.erode(crop_img, KERNEL, iterations=2)
try:
textline_con, hierachy = return_contours_of_image(crop_img)
textline_con_fil = filter_contours_area_of_image(crop_img, textline_con, hierachy, max_area=1, min_area=0.0008)
textline_con, hierarchy = return_contours_of_image(crop_img)
textline_con_fil = filter_contours_area_of_image(crop_img, textline_con, hierarchy, max_area=1, min_area=0.0008)
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
crop_img[crop_img > 0] = 1
@ -1124,8 +1124,8 @@ class Eynollah:
def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot):
self.logger.debug("enter do_order_of_regions_full_layout")
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
cx_text_only_h, cy_text_only_h, x_min_text_only_h, _, _, _, y_cor_x_min_main_h = find_new_features_of_contoures(contours_only_text_parent_h)
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contours(contours_only_text_parent)
cx_text_only_h, cy_text_only_h, x_min_text_only_h, _, _, _, y_cor_x_min_main_h = find_new_features_of_contours(contours_only_text_parent_h)
try:
arg_text_con = []
@ -1274,7 +1274,7 @@ class Eynollah:
def do_order_of_regions_no_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot):
self.logger.debug("enter do_order_of_regions_no_full_layout")
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contours(contours_only_text_parent)
try:
arg_text_con = []
@ -1461,9 +1461,9 @@ class Eynollah:
if num_col_classifier in (1, 2):
try:
regions_without_seperators = (text_regions_p[:, :] == 1) * 1
regions_without_seperators = regions_without_seperators.astype(np.uint8)
text_regions_p = get_marginals(rotate_image(regions_without_seperators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=KERNEL)
regions_without_separators = (text_regions_p[:, :] == 1) * 1
regions_without_separators = regions_without_separators.astype(np.uint8)
text_regions_p = get_marginals(rotate_image(regions_without_separators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=KERNEL)
except Exception as e:
self.logger.error("exception %s", e)
@ -1478,36 +1478,36 @@ class Eynollah:
_, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew)
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
regions_without_separators_d = (text_regions_p_1_n[:, :] == 1) * 1
regions_without_separators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_separators_new(text_regions_p[:,:,0],img_only_regions)
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
text_regions_p_1_n = None
textline_mask_tot_d = None
regions_without_seperators_d = None
regions_without_separators_d = None
pixel_lines = 3
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
_, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
_, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
K.clear_session()
self.logger.info("num_col_classifier: %s", num_col_classifier)
if num_col_classifier >= 3:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
regions_without_seperators = regions_without_seperators.astype(np.uint8)
regions_without_seperators = cv2.erode(regions_without_seperators[:, :], KERNEL, iterations=6)
regions_without_separators = regions_without_separators.astype(np.uint8)
regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6)
else:
regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8)
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], KERNEL, iterations=6)
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
t1 = time.time()
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
boxes = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier)
boxes_d = None
self.logger.debug("len(boxes): %s", len(boxes))
else:
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
boxes_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier)
boxes = None
self.logger.debug("len(boxes): %s", len(boxes_d))
@ -1519,7 +1519,7 @@ class Eynollah:
# plt.show()
K.clear_session()
self.logger.debug('exit run_boxes_no_full_layout')
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, boxes, boxes_d
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d
def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions):
self.logger.debug('enter run_boxes_full_layout')
@ -1570,19 +1570,19 @@ class Eynollah:
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1])
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
regions_without_separators_d = (text_regions_p_1_n[:, :] == 1) * 1
else:
text_regions_p_1_n = None
textline_mask_tot_d = None
regions_without_seperators_d = None
regions_without_separators_d = None
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
regions_without_separators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_separators_new(text_regions_p[:,:,0],img_only_regions)
K.clear_session()
img_revised_tab = np.copy(text_regions_p[:, :])
polygons_of_images = return_contours_of_interested_region(img_revised_tab, 5)
self.logger.debug('exit run_boxes_full_layout')
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully, regions_without_seperators
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators
def run(self):
"""
@ -1627,14 +1627,14 @@ class Eynollah:
t1 = time.time()
if not self.full_layout:
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, boxes, boxes_d = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier)
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier)
pixel_img = 4
min_area_mar = 0.00001
polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar)
if self.full_layout:
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully, regions_without_seperators = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions)
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions)
text_only = ((img_revised_tab[:, :] == 1)) * 1
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
@ -1655,8 +1655,8 @@ class Eynollah:
contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents])
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest])
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent)
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d)
contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d)
@ -1669,8 +1669,8 @@ class Eynollah:
contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] )
areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] )
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest_d])
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent_d)
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d])
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d)
try:
cx_bigest_d_last5 = cx_bigest_d[-5:]
cy_biggest_d_last5 = cy_biggest_d[-5:]
@ -1715,8 +1715,8 @@ class Eynollah:
contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents])
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest])
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent)
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent)
# self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d)
# self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d))
@ -1753,46 +1753,46 @@ class Eynollah:
polygons_of_tabels = []
pixel_img = 4
polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img)
all_found_texline_polygons = adhere_drop_capital_region_into_cprresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, kernel=KERNEL, curved_line=self.curved_line)
all_found_texline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, kernel=KERNEL, curved_line=self.curved_line)
# print(len(contours_only_text_parent_h),len(contours_only_text_parent_h_d_ordered),'contours_only_text_parent_h')
pixel_lines = 6
if not self.headers_off:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
num_col, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
else:
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
elif self.headers_off:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
num_col, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
else:
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
# print(peaks_neg_fin,peaks_neg_fin_d,'num_col2')
# print(spliter_y_new,spliter_y_new_d,'num_col_classifier')
# print(splitter_y_new,splitter_y_new_d,'num_col_classifier')
# print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch')
if num_col_classifier >= 3:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
regions_without_seperators = regions_without_seperators.astype(np.uint8)
regions_without_seperators = cv2.erode(regions_without_seperators[:, :], KERNEL, iterations=6)
random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1])
regions_without_separators = regions_without_separators.astype(np.uint8)
regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6)
random_pixels_for_image = np.random.randn(regions_without_separators.shape[0], regions_without_separators.shape[1])
random_pixels_for_image[random_pixels_for_image < -0.5] = 0
random_pixels_for_image[random_pixels_for_image != 0] = 1
regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 5)] = 1
regions_without_separators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 5)] = 1
else:
regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8)
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], KERNEL, iterations=6)
random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1])
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
random_pixels_for_image = np.random.randn(regions_without_separators_d.shape[0], regions_without_separators_d.shape[1])
random_pixels_for_image[random_pixels_for_image < -0.5] = 0
random_pixels_for_image[random_pixels_for_image != 0] = 1
regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 5)] = 1
regions_without_separators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 5)] = 1
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
boxes = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier)
else:
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
boxes_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier)
if self.plotter:
self.plotter.write_images_into_directory(polygons_of_images, image_page)

@ -6,7 +6,7 @@ import cv2
from scipy.ndimage import gaussian_filter1d
from .utils import crop_image_inside_box
from .utils.rotate import rotyate_image_different
from .utils.rotate import rotate_image_different
from .utils.resize import resize_image
class EynollahPlotter():
@ -121,7 +121,7 @@ class EynollahPlotter():
if self.dir_of_all is not None:
cv2.imwrite(os.path.join(self.dir_of_all, self.image_filename_stem + "_org.png"), self.image_org)
if self.dir_of_deskewed is not None:
img_rotated = rotyate_image_different(self.image_org, slope_deskew)
img_rotated = rotate_image_different(self.image_org, slope_deskew)
cv2.imwrite(os.path.join(self.dir_of_deskewed, self.image_filename_stem + "_deskewed.png"), img_rotated)
def save_page_image(self, image_page):
@ -153,10 +153,10 @@ class EynollahPlotter():
plt.legend(loc='best')
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem+'_rotation_angle.png'))
def write_images_into_directory(self, img_contoures, image_page):
def write_images_into_directory(self, img_contours, image_page):
if self.dir_of_cropped_images is not None:
index = 0
for cont_ind in img_contoures:
for cont_ind in img_contours:
x, y, w, h = cv2.boundingRect(cont_ind)
box = [x, y, w, h]
croped_page, page_coord = crop_image_inside_box(box, image_page)

@ -10,7 +10,7 @@ from scipy.ndimage import gaussian_filter1d
from .is_nan import isNaN
from .contour import (contours_in_same_horizon,
find_new_features_of_contoures,
find_new_features_of_contours,
return_contours_of_image,
return_parent_contours)
@ -348,27 +348,28 @@ def boosting_headers_by_longshot_region_segmentation(textregion_pre_p, textregio
# headers_in_longshot= ( (textregion_pre_np[:,:,0]==2) | (textregion_pre_np[:,:,0]==1) )*1
textregion_pre_p[:, :, 0][(headers_in_longshot[:, :] == 1) & (textregion_pre_p[:, :, 0] != 4)] = 2
textregion_pre_p[:, :, 0][textregion_pre_p[:, :, 0] == 1] = 0
# textregion_pre_p[:,:,0][( img_only_text[:,:]==1) & (textregion_pre_p[:,:,0]!=7) & (textregion_pre_p[:,:,0]!=2)]=1 # eralier it was so, but by this manner the drop capitals are alse deleted
# earlier it was so, but by this manner the drop capitals are also deleted
# textregion_pre_p[:,:,0][( img_only_text[:,:]==1) & (textregion_pre_p[:,:,0]!=7) & (textregion_pre_p[:,:,0]!=2)]=1
textregion_pre_p[:, :, 0][(img_only_text[:, :] == 1) & (textregion_pre_p[:, :, 0] != 7) & (textregion_pre_p[:, :, 0] != 4) & (textregion_pre_p[:, :, 0] != 2)] = 1
return textregion_pre_p
def find_num_col_deskew(regions_without_seperators, sigma_, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:,:].sum(axis=1)
z = gaussian_filter1d(regions_without_seperators_0, sigma_)
def find_num_col_deskew(regions_without_separators, sigma_, multiplier=3.8):
regions_without_separators_0 = regions_without_separators[:,:].sum(axis=1)
z = gaussian_filter1d(regions_without_separators_0, sigma_)
return np.std(z)
def find_num_col(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=0)
##plt.plot(regions_without_seperators_0)
def find_num_col(regions_without_separators, multiplier=3.8):
regions_without_separators_0 = regions_without_separators[:, :].sum(axis=0)
##plt.plot(regions_without_separators_0)
##plt.show()
sigma_ = 35 # 70#35
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
meda_n_updown = regions_without_separators_0[len(regions_without_separators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_separators_0) if x), 0)
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
last_nonzero = len(regions_without_seperators_0) - last_nonzero
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
last_nonzero = len(regions_without_separators_0) - last_nonzero
y = regions_without_separators_0 # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 20)
y_help[10 : len(y) + 10] = y
x = np.array(range(len(y)))
@ -386,8 +387,8 @@ def find_num_col(regions_without_seperators, multiplier=3.8):
first_nonzero = first_nonzero + 200
peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)]
peaks = peaks[(peaks > 0.06 * regions_without_seperators.shape[1]) & (peaks < 0.94 * regions_without_seperators.shape[1])]
peaks_neg = peaks_neg[(peaks_neg > 370) & (peaks_neg < (regions_without_seperators.shape[1] - 370))]
peaks = peaks[(peaks > 0.06 * regions_without_separators.shape[1]) & (peaks < 0.94 * regions_without_separators.shape[1])]
peaks_neg = peaks_neg[(peaks_neg > 370) & (peaks_neg < (regions_without_separators.shape[1] - 370))]
interest_pos = z[peaks]
interest_pos = interest_pos[interest_pos > 10]
# plt.plot(z)
@ -517,22 +518,22 @@ def find_num_col(regions_without_seperators, multiplier=3.8):
##print(len(peaks_neg_true))
return len(peaks_neg_true), peaks_neg_true
def find_num_col_only_image(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=0)
def find_num_col_only_image(regions_without_separators, multiplier=3.8):
regions_without_separators_0 = regions_without_separators[:, :].sum(axis=0)
##plt.plot(regions_without_seperators_0)
##plt.plot(regions_without_separators_0)
##plt.show()
sigma_ = 15
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
meda_n_updown = regions_without_separators_0[len(regions_without_separators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
first_nonzero = next((i for i, x in enumerate(regions_without_separators_0) if x), 0)
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
last_nonzero = len(regions_without_seperators_0) - last_nonzero
last_nonzero = len(regions_without_separators_0) - last_nonzero
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
y = regions_without_separators_0 # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 20)
@ -558,9 +559,9 @@ def find_num_col_only_image(regions_without_seperators, multiplier=3.8):
peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)]
peaks = peaks[(peaks > 0.09 * regions_without_seperators.shape[1]) & (peaks < 0.91 * regions_without_seperators.shape[1])]
peaks = peaks[(peaks > 0.09 * regions_without_separators.shape[1]) & (peaks < 0.91 * regions_without_separators.shape[1])]
peaks_neg = peaks_neg[(peaks_neg > 500) & (peaks_neg < (regions_without_seperators.shape[1] - 500))]
peaks_neg = peaks_neg[(peaks_neg > 500) & (peaks_neg < (regions_without_separators.shape[1] - 500))]
# print(peaks)
interest_pos = z[peaks]
@ -703,31 +704,31 @@ def find_num_col_only_image(regions_without_seperators, multiplier=3.8):
return len(peaks_fin_true), peaks_fin_true
def find_num_col_by_vertical_lines(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :, 0].sum(axis=0)
def find_num_col_by_vertical_lines(regions_without_separators, multiplier=3.8):
regions_without_separators_0 = regions_without_separators[:, :, 0].sum(axis=0)
##plt.plot(regions_without_seperators_0)
##plt.plot(regions_without_separators_0)
##plt.show()
sigma_ = 35 # 70#35
z = gaussian_filter1d(regions_without_seperators_0, sigma_)
z = gaussian_filter1d(regions_without_separators_0, sigma_)
peaks, _ = find_peaks(z, height=0)
# print(peaks,'peaksnew')
return peaks
def return_regions_without_seperators(regions_pre):
def return_regions_without_separators(regions_pre):
kernel = np.ones((5, 5), np.uint8)
regions_without_seperators = ((regions_pre[:, :] != 6) & (regions_pre[:, :] != 0)) * 1
# regions_without_seperators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
regions_without_separators = ((regions_pre[:, :] != 6) & (regions_pre[:, :] != 0)) * 1
# regions_without_separators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
regions_without_seperators = regions_without_seperators.astype(np.uint8)
regions_without_separators = regions_without_separators.astype(np.uint8)
regions_without_seperators = cv2.erode(regions_without_seperators, kernel, iterations=6)
regions_without_separators = cv2.erode(regions_without_separators, kernel, iterations=6)
return regions_without_seperators
return regions_without_separators
def put_drop_out_from_only_drop_model(layout_no_patch, layout1):
@ -783,7 +784,7 @@ def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(layout_in_patch):
return layout_in_patch
def check_any_text_region_in_model_one_is_main_or_header(regions_model_1,regions_model_full,contours_only_text_parent,all_box_coord,all_found_texline_polygons,slopes,contours_only_text_parent_d_ordered):
cx_main,cy_main ,x_min_main , x_max_main, y_min_main ,y_max_main,y_corr_x_min_from_argmin=find_new_features_of_contoures(contours_only_text_parent)
cx_main,cy_main ,x_min_main , x_max_main, y_min_main ,y_max_main,y_corr_x_min_from_argmin=find_new_features_of_contours(contours_only_text_parent)
length_con=x_max_main-x_min_main
height_con=y_max_main-y_min_main
@ -957,7 +958,7 @@ def small_textlines_to_parent_adherence2(textlines_con, textline_iamge, num_col)
img_text2 = img_text2.astype(np.uint8)
imgray = cv2.cvtColor(img_text2, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cont, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(cont[0],type(cont))
@ -1187,7 +1188,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
imgray = cv2.cvtColor(img_p_in_ver, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_lines_ver,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours_lines_ver,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
slope_lines_ver,dist_x_ver, x_min_main_ver ,x_max_main_ver ,cy_main_ver,slope_lines_org_ver,y_min_main_ver, y_max_main_ver, cx_main_ver=find_features_of_lines(contours_lines_ver)
@ -1201,7 +1202,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
imgray = cv2.cvtColor(img_in_hor, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_lines_hor,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours_lines_hor,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
slope_lines_hor,dist_x_hor, x_min_main_hor ,x_max_main_hor ,cy_main_hor,slope_lines_org_hor,y_min_main_hor, y_max_main_hor, cx_main_hor=find_features_of_lines(contours_lines_hor)
@ -1219,7 +1220,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
#print(all_args_uniq,'all_args_uniq')
if len(all_args_uniq)>0:
if type(all_args_uniq[0]) is list:
special_seperators=[]
special_separators=[]
contours_new=[]
for dd in range(len(all_args_uniq)):
merged_all=None
@ -1228,7 +1229,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
some_x_min=x_min_main_hor[all_args_uniq[dd]]
some_x_max=x_max_main_hor[all_args_uniq[dd]]
#img_in=np.zeros(seperators_closeup_n[:,:,2].shape)
#img_in=np.zeros(separators_closeup_n[:,:,2].shape)
#print(img_p_in_ver.shape[1],some_x_max-some_x_min,'xdiff')
diff_x_some=some_x_max-some_x_min
for jv in range(len(some_args)):
@ -1245,14 +1246,14 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
if diff_max_min_uniques>sum_dis and ( (sum_dis/float(diff_max_min_uniques) ) >0.85 ) and ( (diff_max_min_uniques/float(img_p_in_ver.shape[1]))>0.85 ) and np.std( dist_x_hor[some_args] )<(0.55*np.mean( dist_x_hor[some_args] )):
#print(dist_x_hor[some_args],dist_x_hor[some_args].sum(),np.min(x_min_main_hor[some_args]) ,np.max(x_max_main_hor[some_args]),'jalibdi')
#print(np.mean( dist_x_hor[some_args] ),np.std( dist_x_hor[some_args] ),np.var( dist_x_hor[some_args] ),'jalibdiha')
special_seperators.append(np.mean(cy_main_hor[some_args]))
special_separators.append(np.mean(cy_main_hor[some_args]))
else:
img_p_in=img_in_hor
special_seperators=[]
special_separators=[]
else:
img_p_in=img_in_hor
special_seperators=[]
special_separators=[]
img_p_in_ver[:,:,0][img_p_in_ver[:,:,0]==255]=1
@ -1267,7 +1268,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_cross,_=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cx_cross,cy_cross ,_ , _, _ ,_,_=find_new_features_of_contoures(contours_cross)
cx_cross,cy_cross ,_ , _, _ ,_,_=find_new_features_of_contours(contours_cross)
for ii in range(len(cx_cross)):
img_p_in[int(cy_cross[ii])-30:int(cy_cross[ii])+30,int(cx_cross[ii])+5:int(cx_cross[ii])+40,0]=0
@ -1275,8 +1276,8 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
else:
img_p_in=np.copy(img_in_hor)
special_seperators=[]
return img_p_in[:,:,0],special_seperators
special_separators=[]
return img_p_in[:,:,0],special_separators
def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
peaks_neg_tot = []
@ -1288,45 +1289,45 @@ def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_lines, contours_h=None):
seperators_closeup=( (region_pre_p[:,:,:]==pixel_lines))*1
separators_closeup=( (region_pre_p[:,:,:]==pixel_lines))*1
seperators_closeup[0:110,:,:]=0
seperators_closeup[seperators_closeup.shape[0]-150:,:,:]=0
separators_closeup[0:110,:,:]=0
separators_closeup[separators_closeup.shape[0]-150:,:,:]=0
kernel = np.ones((5,5),np.uint8)
seperators_closeup=seperators_closeup.astype(np.uint8)
seperators_closeup = cv2.dilate(seperators_closeup,kernel,iterations = 1)
seperators_closeup = cv2.erode(seperators_closeup,kernel,iterations = 1)
separators_closeup=separators_closeup.astype(np.uint8)
separators_closeup = cv2.dilate(separators_closeup,kernel,iterations = 1)
separators_closeup = cv2.erode(separators_closeup,kernel,iterations = 1)
seperators_closeup_new=np.zeros((seperators_closeup.shape[0] ,seperators_closeup.shape[1] ))
separators_closeup_new=np.zeros((separators_closeup.shape[0] ,separators_closeup.shape[1] ))
##_,seperators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0])
seperators_closeup_n=np.copy(seperators_closeup)
##_,separators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0])
separators_closeup_n=np.copy(separators_closeup)
seperators_closeup_n=seperators_closeup_n.astype(np.uint8)
##plt.imshow(seperators_closeup_n[:,:,0])
separators_closeup_n=separators_closeup_n.astype(np.uint8)
##plt.imshow(separators_closeup_n[:,:,0])
##plt.show()
seperators_closeup_n_binary=np.zeros(( seperators_closeup_n.shape[0],seperators_closeup_n.shape[1]) )
seperators_closeup_n_binary[:,:]=seperators_closeup_n[:,:,0]
separators_closeup_n_binary=np.zeros(( separators_closeup_n.shape[0],separators_closeup_n.shape[1]) )
separators_closeup_n_binary[:,:]=separators_closeup_n[:,:,0]
seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]!=0]=1
#seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==0]=255
#seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==-255]=0
separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]!=0]=1
#separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]==0]=255
#separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]==-255]=0
#seperators_closeup_n_binary=(seperators_closeup_n_binary[:,:]==2)*1
#separators_closeup_n_binary=(separators_closeup_n_binary[:,:]==2)*1
#gray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
#gray = cv2.cvtColor(separators_closeup_n, cv2.COLOR_BGR2GRAY)
###
#print(seperators_closeup_n_binary.shape)
gray_early=np.repeat(seperators_closeup_n_binary[:, :, np.newaxis], 3, axis=2)
#print(separators_closeup_n_binary.shape)
gray_early=np.repeat(separators_closeup_n_binary[:, :, np.newaxis], 3, axis=2)
gray_early=gray_early.astype(np.uint8)
#print(gray_early.shape,'burda')
@ -1335,7 +1336,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
ret_e, thresh_e = cv2.threshold(imgray_e, 0, 255, 0)
#print('burda3')
contours_line_e,hierachy_e=cv2.findContours(thresh_e,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours_line_e,hierarchy_e=cv2.findContours(thresh_e,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#slope_lines_e,dist_x_e, x_min_main_e ,x_max_main_e ,cy_main_e,slope_lines_org_e,y_min_main_e, y_max_main_e, cx_main_e=self.find_features_of_lines(contours_line_e)
@ -1364,9 +1365,9 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
###
seperators_closeup_n_binary=cv2.fillPoly(seperators_closeup_n_binary,pts=cnts_hor_e,color=(0,0,0))
separators_closeup_n_binary=cv2.fillPoly(separators_closeup_n_binary,pts=cnts_hor_e,color=(0,0,0))
gray = cv2.bitwise_not(seperators_closeup_n_binary)
gray = cv2.bitwise_not(separators_closeup_n_binary)
gray=gray.astype(np.uint8)
@ -1418,18 +1419,18 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
vertical = cv2.dilate(vertical,kernel,iterations = 1)
# Show extracted vertical lines
horizontal,special_seperators=combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical,horizontal,num_col_classifier)
horizontal,special_separators=combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical,horizontal,num_col_classifier)
#plt.imshow(horizontal)
#plt.show()
#print(vertical.shape,np.unique(vertical),'verticalvertical')
seperators_closeup_new[:,:][vertical[:,:]!=0]=1
seperators_closeup_new[:,:][horizontal[:,:]!=0]=1
separators_closeup_new[:,:][vertical[:,:]!=0]=1
separators_closeup_new[:,:][horizontal[:,:]!=0]=1
##plt.imshow(seperators_closeup_new)
##plt.imshow(separators_closeup_new)
##plt.show()
##seperators_closeup_n
##separators_closeup_n
vertical=np.repeat(vertical[:, :, np.newaxis], 3, axis=2)
vertical=vertical.astype(np.uint8)
@ -1442,7 +1443,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_line_vers,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours_line_vers,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_vers)
#print(slope_lines,'vertical')
args=np.array( range(len(slope_lines) ))
@ -1454,7 +1455,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
x_max_main_ver=x_max_main[slope_lines==1]
cx_main_ver=cx_main[slope_lines==1]
dist_y_ver=y_max_main_ver-y_min_main_ver
len_y=seperators_closeup.shape[0]/3.0
len_y=separators_closeup.shape[0]/3.0
#plt.imshow(horizontal)
@ -1465,12 +1466,12 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_line_hors,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours_line_hors,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_hors)
slope_lines_org_hor=slope_lines_org[slope_lines==0]
args=np.array( range(len(slope_lines) ))
len_x=seperators_closeup.shape[1]/5.0
len_x=separators_closeup.shape[1]/5.0
dist_y=np.abs(y_max_main-y_min_main)
@ -1549,56 +1550,56 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
matrix_of_lines_ch=np.copy(matrix_l_n)
cy_main_spliters=cy_main_hor[ (x_min_main_hor<=.16*region_pre_p.shape[1]) & (x_max_main_hor>=.84*region_pre_p.shape[1] )]
cy_main_splitters=cy_main_hor[ (x_min_main_hor<=.16*region_pre_p.shape[1]) & (x_max_main_hor>=.84*region_pre_p.shape[1] )]
cy_main_spliters=np.array( list(cy_main_spliters)+list(special_seperators))
cy_main_splitters=np.array( list(cy_main_splitters)+list(special_separators))
if contours_h is not None:
try:
cy_main_spliters_head=cy_main_head[ (x_min_main_head<=.16*region_pre_p.shape[1]) & (x_max_main_head>=.84*region_pre_p.shape[1] )]
cy_main_spliters=np.array( list(cy_main_spliters)+list(cy_main_spliters_head))
cy_main_splitters_head=cy_main_head[ (x_min_main_head<=.16*region_pre_p.shape[1]) & (x_max_main_head>=.84*region_pre_p.shape[1] )]
cy_main_splitters=np.array( list(cy_main_splitters)+list(cy_main_splitters_head))
except:
pass
args_cy_spliter=np.argsort(cy_main_spliters)
args_cy_splitter=np.argsort(cy_main_splitters)
cy_main_spliters_sort=cy_main_spliters[args_cy_spliter]
cy_main_splitters_sort=cy_main_splitters[args_cy_splitter]
spliter_y_new=[]
spliter_y_new.append(0)
for i in range(len(cy_main_spliters_sort)):
spliter_y_new.append( cy_main_spliters_sort[i] )
splitter_y_new=[]
splitter_y_new.append(0)
for i in range(len(cy_main_splitters_sort)):
splitter_y_new.append( cy_main_splitters_sort[i] )
spliter_y_new.append(region_pre_p.shape[0])
splitter_y_new.append(region_pre_p.shape[0])
spliter_y_new_diff=np.diff(spliter_y_new)/float(region_pre_p.shape[0])*100
splitter_y_new_diff=np.diff(splitter_y_new)/float(region_pre_p.shape[0])*100
args_big_parts=np.array(range(len(spliter_y_new_diff))) [ spliter_y_new_diff>22 ]
args_big_parts=np.array(range(len(splitter_y_new_diff))) [ splitter_y_new_diff>22 ]
regions_without_seperators=return_regions_without_seperators(region_pre_p)
regions_without_separators=return_regions_without_separators(region_pre_p)
length_y_threshold=regions_without_seperators.shape[0]/4.0
length_y_threshold=regions_without_separators.shape[0]/4.0
num_col_fin=0
peaks_neg_fin_fin=[]
for iteils in args_big_parts:
for itiles in args_big_parts:
regions_without_seperators_teil=regions_without_seperators[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:,0]
#image_page_background_zero_teil=image_page_background_zero[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:]
regions_without_separators_tile=regions_without_separators[int(splitter_y_new[itiles]):int(splitter_y_new[itiles+1]),:,0]
#image_page_background_zero_tile=image_page_background_zero[int(splitter_y_new[itiles]):int(splitter_y_new[itiles+1]),:]
#print(regions_without_seperators_teil.shape)
##plt.imshow(regions_without_seperators_teil)
#print(regions_without_separators_tile.shape)
##plt.imshow(regions_without_separators_tile)
##plt.show()
#num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators_teil,multiplier=6.0)
#num_col, peaks_neg_fin=self.find_num_col(regions_without_separators_tile,multiplier=6.0)
#regions_without_seperators_teil=cv2.erode(regions_without_seperators_teil,kernel,iterations = 3)
#regions_without_separators_tile=cv2.erode(regions_without_separators_tile,kernel,iterations = 3)
#
num_col, peaks_neg_fin=find_num_col(regions_without_seperators_teil,multiplier=7.0)
num_col, peaks_neg_fin=find_num_col(regions_without_separators_tile,multiplier=7.0)
if num_col>num_col_fin:
num_col_fin=num_col
@ -1614,25 +1615,25 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
#print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,splitter_y_new,separators_closeup_n
def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier):
def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier):
boxes=[]
for i in range(len(spliter_y_new)-1):
#print(spliter_y_new[i],spliter_y_new[i+1])
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
for i in range(len(splitter_y_new)-1):
#print(splitter_y_new[i],splitter_y_new[i+1])
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> splitter_y_new[i] ) & (matrix_of_lines_ch[:,7]< splitter_y_new[i+1] ) ]
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
# check to see is there any vertical seperator to find holes.
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
# check to see is there any vertical separator to find holes.
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(splitter_y_new[i+1]-splitter_y_new[i] )):
try:
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.)
num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=7.)
except:
peaks_neg_fin=[]
@ -1644,28 +1645,28 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
#print('burda')
if len(peaks_neg_fin)==0:
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=3.)
num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=3.)
peaks_neg_fin_early=[]
peaks_neg_fin_early.append(0)
#print(peaks_neg_fin,'peaks_neg_fin')
for p_n in peaks_neg_fin:
peaks_neg_fin_early.append(p_n)
peaks_neg_fin_early.append(regions_without_seperators.shape[1]-1)
peaks_neg_fin_early.append(regions_without_separators.shape[1]-1)
#print(peaks_neg_fin_early,'burda2')
peaks_neg_fin_rev=[]
for i_n in range(len(peaks_neg_fin_early)-1):
#print(i_n,'i_n')
#plt.plot(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]].sum(axis=0) )
#plt.plot(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]].sum(axis=0) )
#plt.show()
try:
num_col, peaks_neg_fin1=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=7.)
num_col, peaks_neg_fin1=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=7.)
except:
peaks_neg_fin1=[]
try:
num_col, peaks_neg_fin2=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=5.)
num_col, peaks_neg_fin2=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=5.)
except:
peaks_neg_fin2=[]
@ -1698,7 +1699,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
#print(peaks_neg_fin,'peaks_neg_fin')
except:
pass
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
#num_col, peaks_neg_fin=find_num_col(regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=7.0)
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
@ -1709,7 +1710,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
peaks_neg_tot=return_points_with_boundies(peaks_neg_fin,0, regions_without_seperators[:,:].shape[1])
peaks_neg_tot=return_points_with_boundies(peaks_neg_fin,0, regions_without_separators[:,:].shape[1])
reading_order_type,x_starting,x_ending,y_type_2,y_diff_type_2,y_lines_without_mother,x_start_without_mother,x_end_without_mother,there_is_sep_with_child,y_lines_with_child_without_mother,x_start_with_child_without_mother,x_end_with_child_without_mother=return_x_start_end_mothers_childs_and_type_of_reading_order(x_min_hor_some,x_max_hor_some,cy_hor_some,peaks_neg_tot,cy_hor_diff)
@ -1719,22 +1720,22 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
try:
y_grenze=int(spliter_y_new[i])+300
y_grenze=int(splitter_y_new[i])+300
#check if there is a big seperater in this y_mains_sep_ohne_grenzen
#check if there is a big separator in this y_mains_sep_ohne_grenzen
args_early_ys=np.array(range(len(y_type_2)))
#print(args_early_ys,'args_early_ys')
#print(int(spliter_y_new[i]),int(spliter_y_new[i+1]))
#print(int(splitter_y_new[i]),int(splitter_y_new[i+1]))
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
args_up=args_early_ys[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
args_up=args_early_ys[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
@ -1747,25 +1748,25 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
if len(y_diff_main_separator_up)>0:
args_to_be_kept=np.array( list( set(args_early_ys)-set(args_main_to_deleted) ) )
#print(args_to_be_kept,'args_to_be_kept')
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(spliter_y_new[i]),int( np.max(y_diff_main_separator_up))])
spliter_y_new[i]=[ np.max(y_diff_main_separator_up) ][0]
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(splitter_y_new[i]),int( np.max(y_diff_main_separator_up))])
splitter_y_new[i]=[ np.max(y_diff_main_separator_up) ][0]
#print(spliter_y_new[i],'spliter_y_new[i]')
#print(splitter_y_new[i],'splitter_y_new[i]')
y_type_2=np.array(y_type_2)[args_to_be_kept]
x_starting=np.array(x_starting)[args_to_be_kept]
x_ending=np.array(x_ending)[args_to_be_kept]
y_diff_type_2=np.array(y_diff_type_2)[args_to_be_kept]
#print('galdiha')
y_grenze=int(spliter_y_new[i])+200
y_grenze=int(splitter_y_new[i])+200
args_early_ys2=np.array(range(len(y_type_2)))
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
args_up2=args_early_ys2[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
args_up2=args_early_ys2[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
#print(y_type_2_up,x_starting_up,x_ending_up,'didid')
@ -1840,7 +1841,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
y_type_2=np.array(y_type_2)
y_diff_type_2_up=np.array(y_diff_type_2_up)
#int(spliter_y_new[i])
#int(splitter_y_new[i])
y_lines_by_order=[]
x_start_by_order=[]
@ -1850,7 +1851,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
if reading_order_type==1:
y_lines_by_order.append(int(spliter_y_new[i]))
y_lines_by_order.append(int(splitter_y_new[i]))
x_start_by_order.append(0)
x_end_by_order.append(len(peaks_neg_tot)-2)
else:
@ -1872,13 +1873,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
x_ending=list(x_ending)
for lj in columns_not_covered:
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(lj)
x_ending.append(lj+1)
##y_lines_by_order.append(int(spliter_y_new[i]))
##y_lines_by_order.append(int(splitter_y_new[i]))
##x_start_by_order.append(0)
for lk in range(len(x_start_without_mother)):
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(x_start_without_mother[lk])
x_ending.append(x_end_without_mother[lk])
@ -1935,13 +1936,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
x_ending=list(x_ending)
for lj in columns_not_covered:
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(lj)
x_ending.append(lj+1)
##y_lines_by_order.append(int(spliter_y_new[i]))
##y_lines_by_order.append(int(splitter_y_new[i]))
##x_start_by_order.append(0)
for lk in range(len(x_start_without_mother)):
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(x_start_without_mother[lk])
x_ending.append(x_end_without_mother[lk])
@ -1986,7 +1987,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
for i_c in range(len(y_column_nc)):
if i_c==(len(y_column_nc)-1):
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<int(spliter_y_new[i+1])) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<int(splitter_y_new[i+1])) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
else:
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<y_column_nc[i_c+1]) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
@ -2141,11 +2142,11 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
if len(y_in_cols)>0:
y_down=np.min(y_in_cols)
else:
y_down=[int(spliter_y_new[i+1])][0]
y_down=[int(splitter_y_new[i+1])][0]
#print(y_itself,'y_itself')
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
except:
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(spliter_y_new[i]),int(spliter_y_new[i+1])])
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(splitter_y_new[i]),int(splitter_y_new[i+1])])
@ -2170,13 +2171,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
x_ending=list(x_ending)
for lj in columns_not_covered:
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(lj)
x_ending.append(lj+1)
##y_lines_by_order.append(int(spliter_y_new[i]))
##y_lines_by_order.append(int(splitter_y_new[i]))
##x_start_by_order.append(0)
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(x_starting[0])
x_ending.append(x_ending[0])
@ -2194,10 +2195,10 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
x_ending=list(x_ending)
for lj in columns_not_covered:
y_type_2.append(int(spliter_y_new[i]))
y_type_2.append(int(splitter_y_new[i]))
x_starting.append(lj)
x_ending.append(lj+1)
##y_lines_by_order.append(int(spliter_y_new[i]))
##y_lines_by_order.append(int(splitter_y_new[i]))
##x_start_by_order.append(0)
@ -2256,13 +2257,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
if len(y_in_cols)>0:
y_down=np.min(y_in_cols)
else:
y_down=[int(spliter_y_new[i+1])][0]
y_down=[int(splitter_y_new[i+1])][0]
#print(y_itself,'y_itself')
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
#else:
#boxes.append([ 0, regions_without_seperators[:,:].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
return boxes

@ -41,7 +41,7 @@ def get_text_region_boxes_by_given_contours(contours):
del contours
return boxes, contours_new
def filter_contours_area_of_image(image, contours, hirarchy, max_area, min_area):
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
@ -50,12 +50,12 @@ def filter_contours_area_of_image(image, contours, hirarchy, max_area, min_area)
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hirarchy[0][jv][3] == -1: # and hirarchy[0][jv][3]==-1 :
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hierarchy[0][jv][3] == -1: # and hierarchy[0][jv][3]==-1 :
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint))
jv += 1
return found_polygons_early
def filter_contours_area_of_image_tables(image, contours, hirarchy, max_area, min_area):
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
@ -68,14 +68,14 @@ def filter_contours_area_of_image_tables(image, contours, hirarchy, max_area, mi
area = polygon.area
##print(np.prod(thresh.shape[:2]))
# Check that polygon has area greater than minimal area
# print(hirarchy[0][jv][3],hirarchy )
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hirarchy[0][jv][3]==-1 :
# print(hierarchy[0][jv][3],hierarchy )
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hierarchy[0][jv][3]==-1 :
# print(c[0][0][1])
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32))
jv += 1
return found_polygons_early
def find_new_features_of_contoures(contours_main):
def find_new_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
@ -126,10 +126,10 @@ def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=min_area)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=min_area)
return contours_imgs
@ -179,10 +179,10 @@ def return_contours_of_interested_textline(region_pre_p, pixel):
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=0.000000003)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003)
return contours_imgs
def return_contours_of_image(image):
@ -194,8 +194,8 @@ def return_contours_of_image(image):
image = image.astype(np.uint8)
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierachy
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
@ -209,10 +209,10 @@ def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_si
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=min_size)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=min_size)
return contours_imgs
@ -227,10 +227,10 @@ def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area,
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=max_area, min_area=min_area)
img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3))
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))

@ -1,12 +1,12 @@
import numpy as np
import cv2
from .contour import (
find_new_features_of_contoures,
find_new_features_of_contours,
return_contours_of_image,
return_parent_contours,
)
def adhere_drop_capital_region_into_cprresponding_textline(
def adhere_drop_capital_region_into_corresponding_textline(
text_regions_p,
polygons_of_drop_capitals,
contours_only_text_parent,
@ -20,9 +20,9 @@ def adhere_drop_capital_region_into_cprresponding_textline(
):
# print(np.shape(all_found_texline_polygons),np.shape(all_found_texline_polygons[3]),'all_found_texline_polygonsshape')
# print(all_found_texline_polygons[3])
cx_m, cy_m, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent)
cx_h, cy_h, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent_h)
cx_d, cy_d, _, _, y_min_d, y_max_d, _ = find_new_features_of_contoures(polygons_of_drop_capitals)
cx_m, cy_m, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
cx_h, cy_h, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_h)
cx_d, cy_d, _, _, y_min_d, y_max_d, _ = find_new_features_of_contours(polygons_of_drop_capitals)
img_con_all = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
for j_cont in range(len(contours_only_text_parent)):
@ -87,9 +87,9 @@ def adhere_drop_capital_region_into_cprresponding_textline(
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
try:
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -117,7 +117,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -141,9 +141,9 @@ def adhere_drop_capital_region_into_cprresponding_textline(
# areas_main=np.array([cv2.contourArea(all_found_texline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_texline_polygons[int(region_final)]))])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -172,7 +172,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -191,7 +191,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
# print(cx_t,'print')
try:
# print(all_found_texline_polygons[j_cont][0])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -217,7 +217,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -238,7 +238,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
else:
pass
##cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
##cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
###print(all_box_coord[j_cont])
###print(cx_t)
###print(cy_t)
@ -267,7 +267,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
##contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
##contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
##print(len(contours_combined),'len textlines mixed')
##areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -292,9 +292,9 @@ def adhere_drop_capital_region_into_cprresponding_textline(
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
try:
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -322,7 +322,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -346,12 +346,12 @@ def adhere_drop_capital_region_into_cprresponding_textline(
# areas_main=np.array([cv2.contourArea(all_found_texline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_texline_polygons[int(region_final)]))])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(cx_t,'print')
try:
# print(all_found_texline_polygons[j_cont][0])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_texline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -377,7 +377,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
@ -408,7 +408,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
######imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
######ret, thresh = cv2.threshold(imgray, 0, 255, 0)
######contours_new,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
######contours_new,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#####contours_new,hir_new=return_contours_of_image(img_con)
#####contours_new_parent=return_parent_contours( contours_new,hir_new)
@ -417,7 +417,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
#####try:
#####if len(contours_new_parent)==1:
######print(all_found_texline_polygons[j_cont][0])
#####cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contoures(all_found_texline_polygons[j_cont])
#####cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_texline_polygons[j_cont])
######print(all_box_coord[j_cont])
######print(cx_t)
######print(cy_t)
@ -442,7 +442,7 @@ def adhere_drop_capital_region_into_cprresponding_textline(
#####imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
#####ret, thresh = cv2.threshold(imgray, 0, 255, 0)
#####contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#####contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#####areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])

@ -4,7 +4,7 @@ from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from .contour import find_new_features_of_contoures, return_contours_of_interested_region
from .contour import find_new_features_of_contours, return_contours_of_interested_region
from .resize import resize_image
from .rotate import rotate_image
@ -185,7 +185,7 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N
min_area_text=0.00001
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contoures(polygons_of_marginals)
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
text_regions[(text_regions[:,:]==4)]=1

@ -44,7 +44,7 @@ def rotate_image(img_patch, slope):
M = cv2.getRotationMatrix2D(center, slope, 1.0)
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
def rotyate_image_different( img, slope):
def rotate_image_different( img, slope):
# img = cv2.imread('images/input.jpg')
num_rows, num_cols = img.shape[:2]

@ -102,8 +102,8 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
else:
peaks_new_tot = peaks_e[:]
textline_con, hierachy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
textline_con, hierarchy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
@ -125,7 +125,7 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
return x, y, x_d, y_d, xv, x_min_cont, y_min_cont, x_max_cont, y_max_cont, first_nonzero, y_padded_up_to_down_padded, y_padded_smoothed, peaks, peaks_neg, rotation_matrix
def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
@ -219,8 +219,8 @@ def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
peaks_new_tot=peaks_e[:]
textline_con,hierachy=return_contours_of_image(img_patch)
textline_con_fil=filter_contours_area_of_image(img_patch,textline_con,hierachy,max_area=1,min_area=0.0008)
textline_con,hierarchy=return_contours_of_image(img_patch)
textline_con_fil=filter_contours_area_of_image(img_patch,textline_con,hierarchy,max_area=1,min_area=0.0008)
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus=int( y_diff_mean * (7./40.0) )
@ -671,7 +671,7 @@ def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
return peaks, textline_boxes_rot
def seperate_lines_vertical(img_patch, contour_text_interest, thetha):
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
thetha = thetha + 90
contour_text_interest_copy = contour_text_interest.copy()
@ -968,7 +968,7 @@ def seperate_lines_vertical(img_patch, contour_text_interest, thetha):
return peaks, textline_boxes_rot
def seperate_lines_new_inside_teils2(img_patch, thetha):
def separate_lines_new_inside_tiles2(img_patch, thetha):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
@ -1054,8 +1054,8 @@ def seperate_lines_new_inside_teils2(img_patch, thetha):
else:
peaks_new_tot = peaks_e[:]
textline_con, hierachy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
textline_con, hierarchy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
@ -1183,7 +1183,7 @@ def seperate_lines_new_inside_teils2(img_patch, thetha):
img_patch = cv2.erode(img_patch, kernel, iterations=1)
return img_patch
def seperate_lines_new_inside_teils(img_path, thetha):
def separate_lines_new_inside_tiles(img_path, thetha):
(h, w) = img_path.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
@ -1326,7 +1326,7 @@ def seperate_lines_new_inside_teils(img_path, thetha):
img_path = cv2.erode(img_path, kernel, iterations=2)
return img_path
def seperate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines):
def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines):
kernel = np.ones((5, 5), np.uint8)
pixel = 255
min_area = 0
@ -1340,10 +1340,10 @@ def seperate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=max_area, min_area=min_area)
cont_final = []
###print(add_boxes_coor_into_textlines,'ikki')
@ -1451,9 +1451,9 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
# print('juzaa')
if abs(slope) > 45:
# print(add_boxes_coor_into_textlines,'avval')
_, contours_rotated_clean = seperate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
_, contours_rotated_clean = separate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
else:
_, contours_rotated_clean = seperate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
_, contours_rotated_clean = separate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
except:
@ -1461,7 +1461,7 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
return contours_rotated_clean
def seperate_lines_new2(img_path, thetha, num_col, slope_region, plotter=None):
def separate_lines_new2(img_path, thetha, num_col, slope_region, plotter=None):
if num_col == 1:
num_patches = int(img_path.shape[1] / 200.0)
@ -1555,15 +1555,15 @@ def seperate_lines_new2(img_path, thetha, num_col, slope_region, plotter=None):
img_line_rotated = rotate_image(img_resized, slopes_tile_wise[i])
img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1
img_patch_seperated = seperate_lines_new_inside_teils2(img_line_rotated, 0)
img_patch_separated = separate_lines_new_inside_tiles2(img_line_rotated, 0)
img_patch_seperated_returned = rotate_image(img_patch_seperated, -slopes_tile_wise[i])
img_patch_seperated_returned[:, :][img_patch_seperated_returned[:, :] != 0] = 1
img_patch_separated_returned = rotate_image(img_patch_separated, -slopes_tile_wise[i])
img_patch_separated_returned[:, :][img_patch_separated_returned[:, :] != 0] = 1
img_patch_seperated_returned_true_size = img_patch_seperated_returned[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], int(img_int.shape[1] * (1)) : int(img_int.shape[1] * (1)) + img_int.shape[1]]
img_patch_separated_returned_true_size = img_patch_separated_returned[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], int(img_int.shape[1] * (1)) : int(img_int.shape[1] * (1)) + img_int.shape[1]]
img_patch_seperated_returned_true_size = img_patch_seperated_returned_true_size[:, margin : length_x - margin]
img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_seperated_returned_true_size
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin]
img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size
# plt.imshow(img_patch_ineterst_revised)
# plt.show()

Loading…
Cancel
Save