|
|
|
@ -256,7 +256,7 @@ class Eynollah:
|
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
|
if self.textline_light:
|
|
|
|
|
self.model_textline_dir = dir_models + "/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
|
|
|
|
|
self.model_textline_dir = dir_models + "/modelens_textline_0_1__2_4_16092024"#"/modelens_textline_1_4_16092024"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_1_3_4_20240915"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
|
|
|
|
|
else:
|
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_20210425"
|
|
|
|
|
if self.ocr:
|
|
|
|
@ -796,7 +796,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
return model, None
|
|
|
|
|
|
|
|
|
|
def do_prediction(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False):
|
|
|
|
|
def do_prediction(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False, thresholding_for_artificial_class_in_light_version=False):
|
|
|
|
|
self.logger.debug("enter do_prediction")
|
|
|
|
|
|
|
|
|
|
img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
|
|
|
|
@ -903,6 +903,13 @@ class Eynollah:
|
|
|
|
|
seg[seg_not_base==1]=4
|
|
|
|
|
seg[seg_background==1]=0
|
|
|
|
|
seg[(seg_line==1) & (seg==0)]=3
|
|
|
|
|
if thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
seg_art = label_p_pred[:,:,:,2]
|
|
|
|
|
|
|
|
|
|
seg_art[seg_art<0.2] = 0
|
|
|
|
|
seg_art[seg_art>0] =1
|
|
|
|
|
|
|
|
|
|
seg[seg_art==1]=2
|
|
|
|
|
|
|
|
|
|
indexer_inside_batch = 0
|
|
|
|
|
for i_batch, j_batch in zip(list_i_s, list_j_s):
|
|
|
|
@ -978,6 +985,14 @@ class Eynollah:
|
|
|
|
|
seg[seg_background==1]=0
|
|
|
|
|
seg[(seg_line==1) & (seg==0)]=3
|
|
|
|
|
|
|
|
|
|
if thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
seg_art = label_p_pred[:,:,:,2]
|
|
|
|
|
|
|
|
|
|
seg_art[seg_art<0.2] = 0
|
|
|
|
|
seg_art[seg_art>0] =1
|
|
|
|
|
|
|
|
|
|
seg[seg_art==1]=2
|
|
|
|
|
|
|
|
|
|
indexer_inside_batch = 0
|
|
|
|
|
for i_batch, j_batch in zip(list_i_s, list_j_s):
|
|
|
|
|
seg_in = seg[indexer_inside_batch,:,:]
|
|
|
|
@ -1845,42 +1860,50 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w, num_col_classifier=None):
|
|
|
|
|
self.logger.debug('enter textline_contours')
|
|
|
|
|
thresholding_for_artificial_class_in_light_version = True#False
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir if patches else self.model_textline_dir_np)
|
|
|
|
|
img = img.astype(np.uint8)
|
|
|
|
|
#img = img.astype(np.uint8)
|
|
|
|
|
img_org = np.copy(img)
|
|
|
|
|
img_h = img_org.shape[0]
|
|
|
|
|
img_w = img_org.shape[1]
|
|
|
|
|
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
|
|
|
|
#print(img.shape,'bin shape textline')
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3)
|
|
|
|
|
if num_col_classifier==1:
|
|
|
|
|
prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
|
|
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
else:
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3)
|
|
|
|
|
if num_col_classifier==1:
|
|
|
|
|
prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
prediction_textline = resize_image(prediction_textline, img_h, img_w)
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_art = (prediction_textline[:,:]==2)*1
|
|
|
|
|
|
|
|
|
|
old_art = np.copy(textline_mask_tot_ea_art)
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_art = textline_mask_tot_ea_art.astype('uint8')
|
|
|
|
|
textline_mask_tot_ea_art = cv2.dilate(textline_mask_tot_ea_art, KERNEL, iterations=1)
|
|
|
|
|
if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
textline_mask_tot_ea_art = textline_mask_tot_ea_art.astype('uint8')
|
|
|
|
|
textline_mask_tot_ea_art = cv2.dilate(textline_mask_tot_ea_art, KERNEL, iterations=1)
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][textline_mask_tot_ea_art[:,:]==1]=2
|
|
|
|
|
prediction_textline[:,:][textline_mask_tot_ea_art[:,:]==1]=2
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_lines = (prediction_textline[:,:]==1)*1
|
|
|
|
|
textline_mask_tot_ea_lines = textline_mask_tot_ea_lines.astype('uint8')
|
|
|
|
|
textline_mask_tot_ea_lines = cv2.dilate(textline_mask_tot_ea_lines, KERNEL, iterations=1)
|
|
|
|
|
|
|
|
|
|
if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
textline_mask_tot_ea_lines = cv2.dilate(textline_mask_tot_ea_lines, KERNEL, iterations=1)
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][textline_mask_tot_ea_lines[:,:]==1]=1
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][old_art[:,:]==1]=2
|
|
|
|
|
if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
prediction_textline[:,:][old_art[:,:]==1]=2
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
prediction_textline_longshot = self.do_prediction(False, img, model_textline)
|
|
|
|
@ -1959,7 +1982,7 @@ class Eynollah:
|
|
|
|
|
img_w_new = 2300#3000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
else:
|
|
|
|
|
img_w_new = 3300#4000
|
|
|
|
|
img_w_new = 3000#4000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
img_resized = resize_image(img,img_h_new, img_w_new )
|
|
|
|
|
|
|
|
|
@ -1968,7 +1991,7 @@ class Eynollah:
|
|
|
|
|
#if (not self.input_binary) or self.full_layout:
|
|
|
|
|
#if self.input_binary:
|
|
|
|
|
#img_bin = np.copy(img_resized)
|
|
|
|
|
if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 3):
|
|
|
|
|
if (not self.input_binary and self.full_layout):# or (not self.input_binary and num_col_classifier >= 3):
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
|
|
|
|
@ -3795,6 +3818,137 @@ class Eynollah:
|
|
|
|
|
def return_list_of_contours_with_desired_order(self, ls_cons, sorted_indexes):
|
|
|
|
|
return [ls_cons[sorted_indexes[index]] for index in range(len(sorted_indexes))]
|
|
|
|
|
|
|
|
|
|
def scale_contours(self,all_found_textline_polygons):
|
|
|
|
|
for i in range(len(all_found_textline_polygons[0])):
|
|
|
|
|
con_ind = all_found_textline_polygons[0][i]
|
|
|
|
|
x_min = np.min( con_ind[:,0,0] )
|
|
|
|
|
y_min = np.min( con_ind[:,0,1] )
|
|
|
|
|
|
|
|
|
|
x_max = np.max( con_ind[:,0,0] )
|
|
|
|
|
y_max = np.max( con_ind[:,0,1] )
|
|
|
|
|
|
|
|
|
|
x_mean = np.mean( con_ind[:,0,0] )
|
|
|
|
|
y_mean = np.mean( con_ind[:,0,1] )
|
|
|
|
|
|
|
|
|
|
arg_y_max = np.argmax( con_ind[:,0,1] )
|
|
|
|
|
arg_y_min = np.argmin( con_ind[:,0,1] )
|
|
|
|
|
|
|
|
|
|
x_cor_y_max = con_ind[arg_y_max,0,0]
|
|
|
|
|
x_cor_y_min = con_ind[arg_y_min,0,0]
|
|
|
|
|
|
|
|
|
|
m_con = (y_max - y_min) / float(x_cor_y_max - x_cor_y_min)
|
|
|
|
|
|
|
|
|
|
con_scaled = con_ind*1
|
|
|
|
|
|
|
|
|
|
con_scaled = con_scaled.astype(np.float)
|
|
|
|
|
|
|
|
|
|
con_scaled[:,0,0] = con_scaled[:,0,0] - int(x_mean)
|
|
|
|
|
con_scaled[:,0,1] = con_scaled[:,0,1] - int(y_mean)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (x_max - x_min) > (y_max - y_min):
|
|
|
|
|
|
|
|
|
|
if (y_max-y_min)<=15:
|
|
|
|
|
con_scaled[:,0,1] = con_ind[:,0,1]*1.8
|
|
|
|
|
|
|
|
|
|
y_max_scaled = np.max(con_scaled[:,0,1])
|
|
|
|
|
y_min_scaled = np.min(con_scaled[:,0,1])
|
|
|
|
|
|
|
|
|
|
y_max_expected = ( m_con*1.8*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
|
|
|
|
|
elif (y_max-y_min)<=30 and (y_max-y_min)>15:
|
|
|
|
|
con_scaled[:,0,1] = con_ind[:,0,1]*1.6
|
|
|
|
|
y_max_scaled = np.max(con_scaled[:,0,1])
|
|
|
|
|
y_min_scaled = np.min(con_scaled[:,0,1])
|
|
|
|
|
|
|
|
|
|
y_max_expected = ( m_con*1.6*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
|
|
|
|
|
elif (y_max-y_min)>30 and (y_max-y_min)<100:
|
|
|
|
|
con_scaled[:,0,1] = con_ind[:,0,1]*1.35
|
|
|
|
|
y_max_scaled = np.max(con_scaled[:,0,1])
|
|
|
|
|
y_min_scaled = np.min(con_scaled[:,0,1])
|
|
|
|
|
|
|
|
|
|
y_max_expected = ( m_con*1.35*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
|
|
|
|
|
else:
|
|
|
|
|
con_scaled[:,0,1] = con_ind[:,0,1]*1.2
|
|
|
|
|
y_max_scaled = np.max(con_scaled[:,0,1])
|
|
|
|
|
y_min_scaled = np.min(con_scaled[:,0,1])
|
|
|
|
|
|
|
|
|
|
y_max_expected = ( m_con*1.2*(x_cor_y_max-x_cor_y_min) + y_min_scaled )
|
|
|
|
|
con_scaled[:,0,0] = con_ind[:,0,0]*1.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if y_max_expected<=y_max_scaled:
|
|
|
|
|
con_scaled[:,0,1] = con_scaled[:,0,1] - y_min_scaled
|
|
|
|
|
|
|
|
|
|
con_scaled[:,0,1] = con_scaled[:,0,1]*(y_max_expected - y_min_scaled)/ (y_max_scaled - y_min_scaled)
|
|
|
|
|
con_scaled[:,0,1] = con_scaled[:,0,1] + y_min_scaled
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
if (x_max-x_min)<=15:
|
|
|
|
|
con_scaled[:,0,0] = con_ind[:,0,0]*1.8
|
|
|
|
|
elif (x_max-x_min)<=30 and (x_max-x_min)>15:
|
|
|
|
|
con_scaled[:,0,0] = con_ind[:,0,0]*1.6
|
|
|
|
|
elif (x_max-x_min)>30 and (x_max-x_min)<100:
|
|
|
|
|
con_scaled[:,0,0] = con_ind[:,0,0]*1.35
|
|
|
|
|
else:
|
|
|
|
|
con_scaled[:,0,0] = con_ind[:,0,0]*1.2
|
|
|
|
|
con_scaled[:,0,1] = con_ind[:,0,1]*1.03
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_min_n = np.min( con_scaled[:,0,0] )
|
|
|
|
|
y_min_n = np.min( con_scaled[:,0,1] )
|
|
|
|
|
|
|
|
|
|
x_mean_n = np.mean( con_scaled[:,0,0] )
|
|
|
|
|
y_mean_n = np.mean( con_scaled[:,0,1] )
|
|
|
|
|
|
|
|
|
|
##diff_x = (x_min_n - x_min)*1
|
|
|
|
|
##diff_y = (y_min_n - y_min)*1
|
|
|
|
|
|
|
|
|
|
diff_x = (x_mean_n - x_mean)*1
|
|
|
|
|
diff_y = (y_mean_n - y_mean)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
con_scaled[:,0,0] = (con_scaled[:,0,0] - diff_x)
|
|
|
|
|
con_scaled[:,0,1] = (con_scaled[:,0,1] - diff_y)
|
|
|
|
|
|
|
|
|
|
x_max_n = np.max( con_scaled[:,0,0] )
|
|
|
|
|
y_max_n = np.max( con_scaled[:,0,1] )
|
|
|
|
|
|
|
|
|
|
diff_disp_x = (x_max_n - x_max) / 2.
|
|
|
|
|
diff_disp_y = (y_max_n - y_max) / 2.
|
|
|
|
|
|
|
|
|
|
x_vals = np.array( np.abs(con_scaled[:,0,0] - diff_disp_x) ).astype(np.int16)
|
|
|
|
|
y_vals = np.array( np.abs(con_scaled[:,0,1] - diff_disp_y) ).astype(np.int16)
|
|
|
|
|
all_found_textline_polygons[0][i][:,0,0] = x_vals[:]
|
|
|
|
|
all_found_textline_polygons[0][i][:,0,1] = y_vals[:]
|
|
|
|
|
return all_found_textline_polygons
|
|
|
|
|
|
|
|
|
|
def scale_contours_new(self, textline_mask_tot_ea):
|
|
|
|
|
|
|
|
|
|
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea)
|
|
|
|
|
all_found_textline_polygons1 = filter_contours_area_of_image(textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_res = resize_image(textline_mask_tot_ea, int( textline_mask_tot_ea.shape[0]*1.6), textline_mask_tot_ea.shape[1])
|
|
|
|
|
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea_res)
|
|
|
|
|
##all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea_res, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)
|
|
|
|
|
all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea_res, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)
|
|
|
|
|
|
|
|
|
|
for i in range(len(all_found_textline_polygons)):
|
|
|
|
|
|
|
|
|
|
#x_mean_1 = np.mean( all_found_textline_polygons1[i][:,0,0] )
|
|
|
|
|
y_mean_1 = np.mean( all_found_textline_polygons1[i][:,0,1] )
|
|
|
|
|
|
|
|
|
|
#x_mean = np.mean( all_found_textline_polygons[i][:,0,0] )
|
|
|
|
|
y_mean = np.mean( all_found_textline_polygons[i][:,0,1] )
|
|
|
|
|
|
|
|
|
|
ydiff = y_mean - y_mean_1
|
|
|
|
|
|
|
|
|
|
all_found_textline_polygons[i][:,0,1] = all_found_textline_polygons[i][:,0,1] - ydiff
|
|
|
|
|
return all_found_textline_polygons
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
|
"""
|
|
|
|
@ -3802,7 +3956,7 @@ class Eynollah:
|
|
|
|
|
"""
|
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
|
|
|
|
|
|
skip_layout_ro = False#True
|
|
|
|
|
skip_layout_ro = True
|
|
|
|
|
|
|
|
|
|
t0_tot = time.time()
|
|
|
|
|
|
|
|
|
@ -3820,7 +3974,6 @@ class Eynollah:
|
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
|
#print("text region early -1 in %.1fs", time.time() - t0)
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
|
|
if not skip_layout_ro:
|
|
|
|
|
if self.light_version:
|
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
@ -4032,6 +4185,7 @@ class Eynollah:
|
|
|
|
|
if self.textline_light:
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
@ -4212,10 +4366,17 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
page_coord, image_page, textline_mask_tot_ea, img_bin_light, cont_page = self.run_graphics_and_columns_without_layout(textline_mask_tot_ea, img_bin_light)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##all_found_textline_polygons =self.scale_contours_new(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
|
|
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea)
|
|
|
|
|
all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001)
|
|
|
|
|
|
|
|
|
|
all_found_textline_polygons=[ all_found_textline_polygons ]
|
|
|
|
|
|
|
|
|
|
all_found_textline_polygons = self.scale_contours(all_found_textline_polygons)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
order_text_new = [0]
|
|
|
|
|
slopes =[0]
|
|
|
|
|
id_of_texts_tot =['region_0001']
|
|
|
|
|